
If the value of x, $x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$, then the value of ${x^3} - 6{x^2} + 6x$ is
(a) 3
(b) 2
(c) 1
(d) None of these
Answer
619.2k+ views
Hint – In this question the value of x is given and we need to find the value of the given expression, take 2 on the left hand side towards x and take cube both the sides. Use the algebraic identity of ${\left( {a - b} \right)^3}$and others to reach the answer.
Complete step-by-step answer:
Given equation is
$x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$
So, we have to find out the value of ${x^3} - 6{x^2} + 6x$.
Now in given equation take 2 to L.H.S and take cube on both sides we have,
$ \Rightarrow x - 2 = {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$ ………………….. (1)
\[ \Rightarrow {\left( {x - 2} \right)^3} = {\left( {{2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}} \right)^3}\]
Now as we know ${\left( {a - b} \right)^3} = {a^3} - {b^3} - 3{a^2}b + 3a{b^2}$ and ${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}$ so, apply this property in above equation we have,
\[ \Rightarrow {x^3} - {2^3} - 3\left( {{x^2}} \right)\left( 2 \right) + 3x\left( {{2^2}} \right) = {\left( {{2^{\dfrac{2}{3}}}} \right)^3} + {\left( {{2^{\dfrac{1}{3}}}} \right)^3} + 3{\left( {{2^{\dfrac{2}{3}}}} \right)^2}\left( {{2^{\dfrac{1}{3}}}} \right) + 3\left( {{2^{\dfrac{2}{3}}}} \right){\left( {{2^{\dfrac{1}{3}}}} \right)^2}\]
Now simplify the above equation we have,
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = {2^2} + 2 + 3\left( {{2^{\dfrac{2}{3}}}} \right)\left( {{2^{\dfrac{1}{3}}}} \right)\left( {{2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}} \right)\]
Now from equation (1) we have,
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = {2^2} + 2 + 3\left( {{2^{\dfrac{2}{3} + \dfrac{1}{3}}}} \right)\left( {x - 2} \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = 6 + \left( {3 \times 2\left( {x - 2} \right)} \right)\]
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = 6 + 6x - 12 = 6x - 6\]
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 6x = - 6\]
\[ \Rightarrow {x^3} - 6{x^2} + 6x = 8 - 6 = 2\]
So the required value of ${x^3} - 6{x^2} + 6x$ is 2.
So, this is the required answer.
Note – Whenever we face such types of problems the key concept is simply not to substitute the value of x in the given expression but somehow to simply and to change the expression into a bigger expression containing sub expressions whose values are known to us. This concept will help you get on the right track to reach the answer.
Complete step-by-step answer:
Given equation is
$x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$
So, we have to find out the value of ${x^3} - 6{x^2} + 6x$.
Now in given equation take 2 to L.H.S and take cube on both sides we have,
$ \Rightarrow x - 2 = {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$ ………………….. (1)
\[ \Rightarrow {\left( {x - 2} \right)^3} = {\left( {{2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}} \right)^3}\]
Now as we know ${\left( {a - b} \right)^3} = {a^3} - {b^3} - 3{a^2}b + 3a{b^2}$ and ${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}$ so, apply this property in above equation we have,
\[ \Rightarrow {x^3} - {2^3} - 3\left( {{x^2}} \right)\left( 2 \right) + 3x\left( {{2^2}} \right) = {\left( {{2^{\dfrac{2}{3}}}} \right)^3} + {\left( {{2^{\dfrac{1}{3}}}} \right)^3} + 3{\left( {{2^{\dfrac{2}{3}}}} \right)^2}\left( {{2^{\dfrac{1}{3}}}} \right) + 3\left( {{2^{\dfrac{2}{3}}}} \right){\left( {{2^{\dfrac{1}{3}}}} \right)^2}\]
Now simplify the above equation we have,
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = {2^2} + 2 + 3\left( {{2^{\dfrac{2}{3}}}} \right)\left( {{2^{\dfrac{1}{3}}}} \right)\left( {{2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}} \right)\]
Now from equation (1) we have,
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = {2^2} + 2 + 3\left( {{2^{\dfrac{2}{3} + \dfrac{1}{3}}}} \right)\left( {x - 2} \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = 6 + \left( {3 \times 2\left( {x - 2} \right)} \right)\]
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = 6 + 6x - 12 = 6x - 6\]
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 6x = - 6\]
\[ \Rightarrow {x^3} - 6{x^2} + 6x = 8 - 6 = 2\]
So the required value of ${x^3} - 6{x^2} + 6x$ is 2.
So, this is the required answer.
Note – Whenever we face such types of problems the key concept is simply not to substitute the value of x in the given expression but somehow to simply and to change the expression into a bigger expression containing sub expressions whose values are known to us. This concept will help you get on the right track to reach the answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What are the factors of 100 class 7 maths CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


