Answer
Verified
99.9k+ views
Hint: In this question, we will use the concept of vectors that is the magnitude and the direction of the vector form of the acceleration. First, we will discuss the basic concept of velocity and acceleration. Then calculate the value of acceleration and show its direction.
Complete step by step solution:
When a particle is moving in a direction then the rate of change in displacement is known as velocity. It is a vector quantity. Velocity is a function of time. Speed gives us the idea how fast or slow an object is moving. Velocity gives us the speed and its direction also. Acceleration is the rate of range of velocity. It is also a vector quantity.
We know that if the value of acceleration is positive the speed of a particle will increase. Whereas if the acceleration is negative then the speed of the particle will decrease.
Here, we have given the value of acceleration as $ - \left( {\hat i + 2\hat j + \hat k} \right)\,{\text{m/}}{{\text{s}}^{\text{2}}}$.
It is negative in sign.
Now we will calculate the magnitude of acceleration as $ \Rightarrow \sqrt {{1^2} + {2^2} + {1^2}} = \sqrt 6 {\text{m/}}{{\text{s}}^{\text{2}}}$
So, from the above calculation the acceleration of the particle is negative and its of value $\sqrt 6 \,{\text{m/}}{{\text{s}}^{\text{2}}}$.
The speed of the particle is decreasing at a rate of $\sqrt 6 \,{\text{m/}}{{\text{s}}^{\text{2}}}$.
Note: As we know that the velocity and the acceleration are the vector quantities, that is they have both magnitude and the direction. Here the velocity of the particle is in a positive direction. So the speed is decreasing. But if the velocity is given in the opposite direction then the speed of the particle would have been increasing.
Complete step by step solution:
When a particle is moving in a direction then the rate of change in displacement is known as velocity. It is a vector quantity. Velocity is a function of time. Speed gives us the idea how fast or slow an object is moving. Velocity gives us the speed and its direction also. Acceleration is the rate of range of velocity. It is also a vector quantity.
We know that if the value of acceleration is positive the speed of a particle will increase. Whereas if the acceleration is negative then the speed of the particle will decrease.
Here, we have given the value of acceleration as $ - \left( {\hat i + 2\hat j + \hat k} \right)\,{\text{m/}}{{\text{s}}^{\text{2}}}$.
It is negative in sign.
Now we will calculate the magnitude of acceleration as $ \Rightarrow \sqrt {{1^2} + {2^2} + {1^2}} = \sqrt 6 {\text{m/}}{{\text{s}}^{\text{2}}}$
So, from the above calculation the acceleration of the particle is negative and its of value $\sqrt 6 \,{\text{m/}}{{\text{s}}^{\text{2}}}$.
The speed of the particle is decreasing at a rate of $\sqrt 6 \,{\text{m/}}{{\text{s}}^{\text{2}}}$.
Note: As we know that the velocity and the acceleration are the vector quantities, that is they have both magnitude and the direction. Here the velocity of the particle is in a positive direction. So the speed is decreasing. But if the velocity is given in the opposite direction then the speed of the particle would have been increasing.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main