Answer
Verified
453.3k+ views
Hint: The mean square speed of the gas is given as, $\text{ mean speed = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ }$and the root mean square (RMS) speed of the gas molecules is equal to the average speed of particles. It is given as, $\text{ rms = }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{ }$.where, R is gas constant, T is the absolute temperature and M is the molar mass of molecules.
Complete step by step solution:
We know that the mean speed is an average of the speed particles. It is a square root of the average velocity of the molecules in a gas.
The root mean square speed is given as,
$\text{ mean speed = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ }$
Where R is gas constant, T is the absolute temperature and M is the molar mass of molecules.
The root mean square (RMS) speed is used to measure the average speed of particles in a gas. Mathematically it is represented as follows
$\text{ rms = }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{ }$
Where R is gas constant, T is the absolute temperature and M is the molar mass of molecules.
Let’s first calculate the molecular weight of ozone $\text{ }{{\text{O}}_{\text{3}}}\text{ }$ and oxygen gas $\text{ }{{\text{O}}_{2}}\text{ }$.molecular weight $\text{ }{{\text{O}}_{\text{3}}}\text{ }$is:
$\text{ MW of }{{\text{O}}_{\text{3}}}\text{ }=\text{ 3}\times \left( 16 \right)\text{ = 48 }$
The molecular weight of oxygen gas $\text{ }{{\text{O}}_{2}}\text{ }$is:
$\text{ MW of }{{\text{O}}_{2}}\text{ }=\text{ 2}\times \left( 16 \right)\text{ = 32 }$
The mean speed ( $\text{ }{{\text{V}}_{\text{mean}}}\text{ }$) for the ozone $\text{ }{{\text{O}}_{\text{3}}}\text{ }$molecule is written as,
$\text{ mean speed of }{{\text{O}}_{\text{3}}}\left( {{\text{V}}_{\text{mean}}} \right)\text{= }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ }\times \text{48}}}\text{ }$ (1)
Let’s this as an equation (1) .now the root mean square or RMS speed ($\text{ }{{\text{V}}_{\text{rms}}}\text{ }$) for oxygen gas is written as,
$\text{ rms speed of }{{\text{O}}_{\text{2}}}\text{ molecule }\left( {{\text{V}}_{\text{rms}}} \right)\text{= }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{ =}\sqrt{\dfrac{\text{3RT}}{32}\text{ }}\text{ }$ (2)
We are interested to determine the ratio of the mean speed of a $\text{ }{{\text{O}}_{\text{3}}}\text{ }$molecule to the RMS speed of the oxygen gas. Let’s divide equation (1) by equation (2).On dividing we have,
$\begin{align}
& \text{ }\dfrac{\text{mean speed of }{{\text{O}}_{\text{3}}}}{\text{rms speed of }{{\text{O}}_{\text{2}}}}\text{ = }\dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\dfrac{\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ }\!\!\times\!\!\text{ 48}}}}{\sqrt{\dfrac{\text{3RT}}{\text{32}}\text{ }}} \\
& \Rightarrow \dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ }\!\!\times\!\!\text{ 48}}}\text{ }\times \text{ }\sqrt{\dfrac{32}{\text{3RT}}} \\
& \Rightarrow \dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\sqrt{\dfrac{16}{9\text{ }\!\!\pi\!\!\text{ }}}\text{ } \\
\end{align}$
Thus the ratio of the mean speed of ozone gas and to the root mean square speed of oxygen gas is equal to, $\sqrt{\dfrac{16}{9\text{ }\!\!\pi\!\!\text{ }}}\text{ }$or $\text{ }{{\left( \dfrac{16}{9\text{ }\!\!\pi\!\!\text{ }} \right)}^{{\scriptstyle{}^{1}/{}_{2}}}}\text{ }$.
Hence, (B) is the correct option.
Note: Note that, for a particular gas the ratio of the speed of rms to the average speed is equal to,
$\text{ }\dfrac{{{\text{V}}_{\text{rms}}}}{{{\text{V}}_{\text{mean}}}}\text{= }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{:}\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ = }\sqrt{\text{3}}\text{:}\sqrt{\dfrac{\text{8}}{\text{ }\!\!\pi\!\!\text{ }}}\text{ = 1}\text{.181 : 1 }$
This relation is applicable for the same gas only.
Complete step by step solution:
We know that the mean speed is an average of the speed particles. It is a square root of the average velocity of the molecules in a gas.
The root mean square speed is given as,
$\text{ mean speed = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ }$
Where R is gas constant, T is the absolute temperature and M is the molar mass of molecules.
The root mean square (RMS) speed is used to measure the average speed of particles in a gas. Mathematically it is represented as follows
$\text{ rms = }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{ }$
Where R is gas constant, T is the absolute temperature and M is the molar mass of molecules.
Let’s first calculate the molecular weight of ozone $\text{ }{{\text{O}}_{\text{3}}}\text{ }$ and oxygen gas $\text{ }{{\text{O}}_{2}}\text{ }$.molecular weight $\text{ }{{\text{O}}_{\text{3}}}\text{ }$is:
$\text{ MW of }{{\text{O}}_{\text{3}}}\text{ }=\text{ 3}\times \left( 16 \right)\text{ = 48 }$
The molecular weight of oxygen gas $\text{ }{{\text{O}}_{2}}\text{ }$is:
$\text{ MW of }{{\text{O}}_{2}}\text{ }=\text{ 2}\times \left( 16 \right)\text{ = 32 }$
The mean speed ( $\text{ }{{\text{V}}_{\text{mean}}}\text{ }$) for the ozone $\text{ }{{\text{O}}_{\text{3}}}\text{ }$molecule is written as,
$\text{ mean speed of }{{\text{O}}_{\text{3}}}\left( {{\text{V}}_{\text{mean}}} \right)\text{= }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ }\times \text{48}}}\text{ }$ (1)
Let’s this as an equation (1) .now the root mean square or RMS speed ($\text{ }{{\text{V}}_{\text{rms}}}\text{ }$) for oxygen gas is written as,
$\text{ rms speed of }{{\text{O}}_{\text{2}}}\text{ molecule }\left( {{\text{V}}_{\text{rms}}} \right)\text{= }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{ =}\sqrt{\dfrac{\text{3RT}}{32}\text{ }}\text{ }$ (2)
We are interested to determine the ratio of the mean speed of a $\text{ }{{\text{O}}_{\text{3}}}\text{ }$molecule to the RMS speed of the oxygen gas. Let’s divide equation (1) by equation (2).On dividing we have,
$\begin{align}
& \text{ }\dfrac{\text{mean speed of }{{\text{O}}_{\text{3}}}}{\text{rms speed of }{{\text{O}}_{\text{2}}}}\text{ = }\dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\dfrac{\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ }\!\!\times\!\!\text{ 48}}}}{\sqrt{\dfrac{\text{3RT}}{\text{32}}\text{ }}} \\
& \Rightarrow \dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ }\!\!\times\!\!\text{ 48}}}\text{ }\times \text{ }\sqrt{\dfrac{32}{\text{3RT}}} \\
& \Rightarrow \dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\sqrt{\dfrac{16}{9\text{ }\!\!\pi\!\!\text{ }}}\text{ } \\
\end{align}$
Thus the ratio of the mean speed of ozone gas and to the root mean square speed of oxygen gas is equal to, $\sqrt{\dfrac{16}{9\text{ }\!\!\pi\!\!\text{ }}}\text{ }$or $\text{ }{{\left( \dfrac{16}{9\text{ }\!\!\pi\!\!\text{ }} \right)}^{{\scriptstyle{}^{1}/{}_{2}}}}\text{ }$.
Hence, (B) is the correct option.
Note: Note that, for a particular gas the ratio of the speed of rms to the average speed is equal to,
$\text{ }\dfrac{{{\text{V}}_{\text{rms}}}}{{{\text{V}}_{\text{mean}}}}\text{= }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{:}\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ = }\sqrt{\text{3}}\text{:}\sqrt{\dfrac{\text{8}}{\text{ }\!\!\pi\!\!\text{ }}}\text{ = 1}\text{.181 : 1 }$
This relation is applicable for the same gas only.
Recently Updated Pages
On the portion of the straight line x + 2y 4 intercepted class 11 maths JEE_Main
The equations of two equal sides AB AC of an isosceles class 11 maths JEE_Main
If two curves whose equations are ax2 + 2hxy + by2 class 11 maths JEE_Main
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE