Answer
Verified
429.6k+ views
Hint: The Henderson-Hasselbalch equation is a mathematical equation which connects the pH of the solution and the $p{K_a}$ which is equal to the $- \log {K_a}$. The ${K_a}$ is the acid dissociation constant of weak acid and its conjugate base.
Complete step by step answer:
The equation which relates the pH of an aqueous solution of an acid to the acid dissociation constant of the acid is described as the Henderson-Hasselbalch equation.
The equation is given as shown below.
$pH = p{K_a} + \log \left( {\dfrac{{[Conjugate\;base]}}{{[weak\;acid]}}} \right)$
The $p{K_a}$ value is equal to the negative logarithm of acid dissociation constant of the weak acid. It measures the strength of the acid's solution. The weak acid has $p{K_a}$ value ranging from 2-12 in water.
It is given as shown below.
$p{K_a} = - \log \left[ {{K_a}} \right]$
Where,
${K_a}$ is the acid dissociation constant of the weak acid.
The reaction of the weak acid-conjugate base buffer is shown below.
$HA(aq) + {H_3}O(l) \rightleftarrows {H_3}{O^ + }(aq) + {A^ - }(aq)$
The pH of the solution is given as shown below.
$pH = p{K_a} + \log \left( {\dfrac{{[{A^ - }]}}{{[HA]}}} \right)$
Now, we need to determine the ratio which exists between the concentration of the conjugate base, ${A^ - }$ and the concentration of the weak acid HA, add log on one side of the equation.
$\log \left( {\dfrac{{[{A^ - }]}}{{[HA]}}} \right) = pH - p{K_a}$
If x is equal to y,
${10^x} = {10^y}$
The above equation is equivalent to
${10^{\log \left( {\dfrac{{[{A^ - }]}}{{[HA]}}} \right)}} = {10^{pH - p{K_a}}}$
As we know,
${10^{\log 10(x)}} = x$
We get,
$\dfrac{{[{A^ - }]}}{{[HA]}} = {10^{pH - p{K_a}}}$
Note:
The Henderson-Hasselbalch equation is useful for determining the pH of the buffer solution and also determining the equilibrium pH in an acid-base reaction. The equation can also be used to determine the amount of acid and conjugate base used to prepare the buffer solution of a particular pH.
Complete step by step answer:
The equation which relates the pH of an aqueous solution of an acid to the acid dissociation constant of the acid is described as the Henderson-Hasselbalch equation.
The equation is given as shown below.
$pH = p{K_a} + \log \left( {\dfrac{{[Conjugate\;base]}}{{[weak\;acid]}}} \right)$
The $p{K_a}$ value is equal to the negative logarithm of acid dissociation constant of the weak acid. It measures the strength of the acid's solution. The weak acid has $p{K_a}$ value ranging from 2-12 in water.
It is given as shown below.
$p{K_a} = - \log \left[ {{K_a}} \right]$
Where,
${K_a}$ is the acid dissociation constant of the weak acid.
The reaction of the weak acid-conjugate base buffer is shown below.
$HA(aq) + {H_3}O(l) \rightleftarrows {H_3}{O^ + }(aq) + {A^ - }(aq)$
The pH of the solution is given as shown below.
$pH = p{K_a} + \log \left( {\dfrac{{[{A^ - }]}}{{[HA]}}} \right)$
Now, we need to determine the ratio which exists between the concentration of the conjugate base, ${A^ - }$ and the concentration of the weak acid HA, add log on one side of the equation.
$\log \left( {\dfrac{{[{A^ - }]}}{{[HA]}}} \right) = pH - p{K_a}$
If x is equal to y,
${10^x} = {10^y}$
The above equation is equivalent to
${10^{\log \left( {\dfrac{{[{A^ - }]}}{{[HA]}}} \right)}} = {10^{pH - p{K_a}}}$
As we know,
${10^{\log 10(x)}} = x$
We get,
$\dfrac{{[{A^ - }]}}{{[HA]}} = {10^{pH - p{K_a}}}$
Note:
The Henderson-Hasselbalch equation is useful for determining the pH of the buffer solution and also determining the equilibrium pH in an acid-base reaction. The equation can also be used to determine the amount of acid and conjugate base used to prepare the buffer solution of a particular pH.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE