Answer
Verified
464.4k+ views
Hint: The relation between the magnetic susceptibility and relative permeability can be determined by understanding the three equations. They are the magnetic susceptibility equation, magnetic permeability equation, and relative permeability equation. By using these three equations the relation between magnetic susceptibility and relative permeability can be determined.
Complete step by step answer:
1. Equation of magnetic susceptibility:
${X_m} = \dfrac{M}{H}\,.................\left( 1 \right)$
Where,
${X_m}$ is the magnetic susceptibility
$M$ is the magnetization
$H$ is the magnetic field strength
2. Equation of Magnetic permeability:
$\mu = \dfrac{B}{H}\,......................\left( 2 \right)$
Where,
$\mu $ is the permeability
$B$ is the magnetic induction
$H$ is the magnetic field strength
3. Equation of relative permeability:
${\mu _r} = \dfrac{\mu }{{{\mu _0}}}\,..................\left( 3 \right)$
Where,
${\mu _r}$ is the relative permeability
$\mu $ is the permeability
${\mu _0}$ is the absolute permeability
The relation between $H$, $B$ and $M$ is,
$B = {\mu _0}\left( {M + H} \right)\,............\left( 4 \right)$
Substituting the value of $\left( M \right)$, taking from the equation (1),
$\Rightarrow B = {\mu _0}\left( {{X_m}H + H} \right)\,$
By taking the common term $\left( H \right)$ out from the bracket, then the above equation is written as,
$\Rightarrow B = {\mu _0}\left( {{X_m} + 1} \right)\,H$
By rearranging the terms in the above equation,
$\Rightarrow B = {\mu _0}\left( {1 + {X_m}} \right)\,H\,.................\left( 5 \right)$
Now, the relation between the relative permeability and the susceptibility is,
$\Rightarrow B = \mu H$
Substituting the value of $\left( \mu \right)$ which is taken from the equation (3), then,
$\Rightarrow B = {\mu _0}{\mu _r}H\,..................\left( 6 \right)$
By equating the equation (5) and equation (6), then,
$\Rightarrow {\mu _0}\left( {1 + {X_m}} \right)H = {\mu _0}{\mu _r}H$
Now, cancelling the same terms on each side, the above equation can be written as,
$\Rightarrow \left( {1 + {X_m}} \right) = {\mu _r}\,....................\left( 7 \right)$
From equation (7), it clearly shows the relationship between relative permeability $\left( {{\mu _r}} \right)$ and magnetic susceptibility $\left( {{X_m}} \right)$.
Hence, option (C) is the correct answer.
Note:
The relation between the relative permeability and the magnetic susceptibility can be determined in another way also. The magnetic induction $\left( B \right)$ is equal to the sum of number of lines of force $\left( {{B_0}} \right)$ and the number of lines due to magnetisation of specimen $\left( {{\mu _0}I} \right)$, by using this statement the relation between relative permeability and the magnetic susceptibility can be determined.
Complete step by step answer:
1. Equation of magnetic susceptibility:
${X_m} = \dfrac{M}{H}\,.................\left( 1 \right)$
Where,
${X_m}$ is the magnetic susceptibility
$M$ is the magnetization
$H$ is the magnetic field strength
2. Equation of Magnetic permeability:
$\mu = \dfrac{B}{H}\,......................\left( 2 \right)$
Where,
$\mu $ is the permeability
$B$ is the magnetic induction
$H$ is the magnetic field strength
3. Equation of relative permeability:
${\mu _r} = \dfrac{\mu }{{{\mu _0}}}\,..................\left( 3 \right)$
Where,
${\mu _r}$ is the relative permeability
$\mu $ is the permeability
${\mu _0}$ is the absolute permeability
The relation between $H$, $B$ and $M$ is,
$B = {\mu _0}\left( {M + H} \right)\,............\left( 4 \right)$
Substituting the value of $\left( M \right)$, taking from the equation (1),
$\Rightarrow B = {\mu _0}\left( {{X_m}H + H} \right)\,$
By taking the common term $\left( H \right)$ out from the bracket, then the above equation is written as,
$\Rightarrow B = {\mu _0}\left( {{X_m} + 1} \right)\,H$
By rearranging the terms in the above equation,
$\Rightarrow B = {\mu _0}\left( {1 + {X_m}} \right)\,H\,.................\left( 5 \right)$
Now, the relation between the relative permeability and the susceptibility is,
$\Rightarrow B = \mu H$
Substituting the value of $\left( \mu \right)$ which is taken from the equation (3), then,
$\Rightarrow B = {\mu _0}{\mu _r}H\,..................\left( 6 \right)$
By equating the equation (5) and equation (6), then,
$\Rightarrow {\mu _0}\left( {1 + {X_m}} \right)H = {\mu _0}{\mu _r}H$
Now, cancelling the same terms on each side, the above equation can be written as,
$\Rightarrow \left( {1 + {X_m}} \right) = {\mu _r}\,....................\left( 7 \right)$
From equation (7), it clearly shows the relationship between relative permeability $\left( {{\mu _r}} \right)$ and magnetic susceptibility $\left( {{X_m}} \right)$.
Hence, option (C) is the correct answer.
Note:
The relation between the relative permeability and the magnetic susceptibility can be determined in another way also. The magnetic induction $\left( B \right)$ is equal to the sum of number of lines of force $\left( {{B_0}} \right)$ and the number of lines due to magnetisation of specimen $\left( {{\mu _0}I} \right)$, by using this statement the relation between relative permeability and the magnetic susceptibility can be determined.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE