Answer
Verified
472.5k+ views
Hint: Here, we will proceed by using Snell's law and then we will put the conditions for critical angle to this law and find the required relationship between critical angle and refractive index.
Complete step-by-step answer:
Formulas Used- $\dfrac{{\sin i}}{{\sin r}} = \dfrac{{{\mu _{\text{a}}}}}{{{\mu _{\text{b}}}}}$ and $\sin {90^0} = 1$.
Let us suppose a light ray is incident from a rarer medium I having refractive index of ${\mu _{\text{a}}}$ and this light ray gets refracted into a denser medium II having refractive index of ${\mu _{\text{b}}}$. Here, refraction will be occurring.
According to Snell’s law (or second law of refraction), for a light ray entering from a medium with refractive index ${\mu _{\text{a}}}$ to a medium with refractive index ${\mu _{\text{b}}}$ along with the angle of incidence as i and the angle of refraction as r, we can write
$\dfrac{{\sin i}}{{\sin r}} = \dfrac{{{\mu _{\text{a}}}}}{{{\mu _{\text{b}}}}}{\text{ }} \to {\text{(1)}}$
As the incidence angle in any medium approaches a certain critical value, the refracted ray lies along the boundary, having a refractive angle of 90 degrees. This angle of incidence is known as the critical angle. It is the highest angle of incidence for which there might still be refraction.
For critical angle (${i_{\text{c}}}$), Angle of incidence i = Critical angle ${i_{\text{c}}}$ and Angle of refraction r = ${90^0}$
Now, replacing i by ${i_{\text{c}}}$ and r by ${90^0}$ in the formula given by equation (1), we get
$\dfrac{{\sin {i_{\text{c}}}}}{{\sin {{90}^0}}} = \dfrac{{{\mu _{\text{a}}}}}{{{\mu _{\text{b}}}}}$
Using $\sin {90^0} = 1$ in the above equation, we get
$
\Rightarrow \dfrac{{\sin {i_{\text{c}}}}}{1} = \dfrac{{{\mu _{\text{a}}}}}{{{\mu _{\text{b}}}}} \\
\Rightarrow \sin {i_{\text{c}}} = \dfrac{{{\mu _{\text{a}}}}}{{{\mu _{\text{b}}}}}{\text{ }} \to {\text{(2)}} \\
$
Now, assuming the rarer medium be air which has a refractive index of 1 (i.e., ${\mu _{\text{a}}} = 1$) and the denser medium has a refractive index of $\mu $ (i.e., $\mu = {\mu _{\text{b}}}$)
By putting ${\mu _{\text{a}}} = 1$ and $\mu = {\mu _{\text{b}}}$ in equation (2), we get
$ \Rightarrow \sin {i_{\text{c}}} = \dfrac{1}{\mu }$
The above equation represents the required relationship between critical angle and refractive index.
Hence, option C is correct.
Note: The refractive index is the ratio of speed of light in medium to the speed of light in vacuum. As light travels in a medium other than vacuum, the medium's atoms continually absorb and re-emit the light particles, slowing down the speed of light. Refractive index is also called a refraction index, measuring the bending of a ray of light as it travels from one medium to another.
Complete step-by-step answer:
Formulas Used- $\dfrac{{\sin i}}{{\sin r}} = \dfrac{{{\mu _{\text{a}}}}}{{{\mu _{\text{b}}}}}$ and $\sin {90^0} = 1$.
Let us suppose a light ray is incident from a rarer medium I having refractive index of ${\mu _{\text{a}}}$ and this light ray gets refracted into a denser medium II having refractive index of ${\mu _{\text{b}}}$. Here, refraction will be occurring.
According to Snell’s law (or second law of refraction), for a light ray entering from a medium with refractive index ${\mu _{\text{a}}}$ to a medium with refractive index ${\mu _{\text{b}}}$ along with the angle of incidence as i and the angle of refraction as r, we can write
$\dfrac{{\sin i}}{{\sin r}} = \dfrac{{{\mu _{\text{a}}}}}{{{\mu _{\text{b}}}}}{\text{ }} \to {\text{(1)}}$
As the incidence angle in any medium approaches a certain critical value, the refracted ray lies along the boundary, having a refractive angle of 90 degrees. This angle of incidence is known as the critical angle. It is the highest angle of incidence for which there might still be refraction.
For critical angle (${i_{\text{c}}}$), Angle of incidence i = Critical angle ${i_{\text{c}}}$ and Angle of refraction r = ${90^0}$
Now, replacing i by ${i_{\text{c}}}$ and r by ${90^0}$ in the formula given by equation (1), we get
$\dfrac{{\sin {i_{\text{c}}}}}{{\sin {{90}^0}}} = \dfrac{{{\mu _{\text{a}}}}}{{{\mu _{\text{b}}}}}$
Using $\sin {90^0} = 1$ in the above equation, we get
$
\Rightarrow \dfrac{{\sin {i_{\text{c}}}}}{1} = \dfrac{{{\mu _{\text{a}}}}}{{{\mu _{\text{b}}}}} \\
\Rightarrow \sin {i_{\text{c}}} = \dfrac{{{\mu _{\text{a}}}}}{{{\mu _{\text{b}}}}}{\text{ }} \to {\text{(2)}} \\
$
Now, assuming the rarer medium be air which has a refractive index of 1 (i.e., ${\mu _{\text{a}}} = 1$) and the denser medium has a refractive index of $\mu $ (i.e., $\mu = {\mu _{\text{b}}}$)
By putting ${\mu _{\text{a}}} = 1$ and $\mu = {\mu _{\text{b}}}$ in equation (2), we get
$ \Rightarrow \sin {i_{\text{c}}} = \dfrac{1}{\mu }$
The above equation represents the required relationship between critical angle and refractive index.
Hence, option C is correct.
Note: The refractive index is the ratio of speed of light in medium to the speed of light in vacuum. As light travels in a medium other than vacuum, the medium's atoms continually absorb and re-emit the light particles, slowing down the speed of light. Refractive index is also called a refraction index, measuring the bending of a ray of light as it travels from one medium to another.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE