
How can the resolving power of a telescope be increased?
Answer
489.3k+ views
Hint: The resolving power of a telescope is the reciprocal of the smallest angular separation between two distant objects whose image is just seen separately. It is also the reciprocal of the limit of resolution of the telescope.
Formula used:
$RP= \dfrac{1}{limit\;of\;resolution}=\dfrac{a}{1.22\lambda}$
Complete step by step answer:
When the light of comparable wavelength falls on a circular opening like a lens, this results in a blurred image called the airy disc. This occurs due to the overlapping of the wavelengths at the circular opening. The half-angle of the first minimum is given by:$\sin\theta\approx 1.22\dfrac{\lambda}{a}$
In order to obtain point images, the source must be just resolved. The criterion for the image to be just resolved is given by Rayleigh and is called the Rayleigh Criterion. It states: two point sources are said to be just resolved if the principal diffraction maximum of the first image coincides with the first minimum of the other.
The resolving power of a telescope is the reciprocal of the smallest angular separation between two distant objects whose image is just seen separately. It is also the reciprocal of the limit of resolution of the telescope.
It given as $RP= \dfrac{1}{limit\;of\;resolution}=\dfrac{a}{1.22\lambda}$ where $a$ is the diameter of the objective lens of the telescope and $\lambda$ is the wavelength of the incident light.
Thus clearly, $RP\propto a$ and $RP\propto \dfrac{1}{\lambda}$. As the wavelength of the incident light is fixed, we can increase the resolving power by increasing the diameter of the objective lens.
Hence, in order to increase the resolving power, the diameter of the objective lens can be increased.
Note:
Limit of resolution $\theta=1.22\dfrac{\lambda}{a}$, whereas resolving power $RP= \dfrac{1}{limit\;of\;resolution}=\dfrac{a}{1.22\lambda}$. Students tend to confuse between the two. It is suggested that you remember one, and take the reciprocal to find the other. Also, $RP\propto a$ and $RP\propto \dfrac{1}{\lambda}$. As the wavelength of the incident light is fixed, we can increase the resolving power by increasing the diameter of the objective lens.
Formula used:
$RP= \dfrac{1}{limit\;of\;resolution}=\dfrac{a}{1.22\lambda}$
Complete step by step answer:
When the light of comparable wavelength falls on a circular opening like a lens, this results in a blurred image called the airy disc. This occurs due to the overlapping of the wavelengths at the circular opening. The half-angle of the first minimum is given by:$\sin\theta\approx 1.22\dfrac{\lambda}{a}$
In order to obtain point images, the source must be just resolved. The criterion for the image to be just resolved is given by Rayleigh and is called the Rayleigh Criterion. It states: two point sources are said to be just resolved if the principal diffraction maximum of the first image coincides with the first minimum of the other.
The resolving power of a telescope is the reciprocal of the smallest angular separation between two distant objects whose image is just seen separately. It is also the reciprocal of the limit of resolution of the telescope.
It given as $RP= \dfrac{1}{limit\;of\;resolution}=\dfrac{a}{1.22\lambda}$ where $a$ is the diameter of the objective lens of the telescope and $\lambda$ is the wavelength of the incident light.
Thus clearly, $RP\propto a$ and $RP\propto \dfrac{1}{\lambda}$. As the wavelength of the incident light is fixed, we can increase the resolving power by increasing the diameter of the objective lens.
Hence, in order to increase the resolving power, the diameter of the objective lens can be increased.
Note:
Limit of resolution $\theta=1.22\dfrac{\lambda}{a}$, whereas resolving power $RP= \dfrac{1}{limit\;of\;resolution}=\dfrac{a}{1.22\lambda}$. Students tend to confuse between the two. It is suggested that you remember one, and take the reciprocal to find the other. Also, $RP\propto a$ and $RP\propto \dfrac{1}{\lambda}$. As the wavelength of the incident light is fixed, we can increase the resolving power by increasing the diameter of the objective lens.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Who is Mukesh What is his dream Why does it look like class 12 english CBSE

Who was RajKumar Shukla Why did he come to Lucknow class 12 english CBSE

The word Maasai is derived from the word Maa Maasai class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Which country did Danny Casey play for class 12 english CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
