Answer
Verified
471.6k+ views
Hint:The R.M.S. value of a function of a physical quantity is the square root of the arithmetic mean of the squares of the values of voltage while peak voltage is the maximum value of voltage. In order to find the relation between them use basic relation of general voltage and peak voltage as function to calculate the R.M.S. value of voltage.
Complete step-by-step answer:
According to question
We use analytical methods for calculation of R.M.S. value of voltage.
We know that the R.M.S. value of a function of a physical quantity is the square root of the arithmetic mean of the squares of the values of voltage.
Therefore according to the definition general equation for R.M.S. value of any continuous function V(t) defined over a time interval $T_1$ ≤ t ≤ $T_2$ is given by
Similarly, we can find R.M.S. value of voltage by using its general form as a function which is given as: ${V_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\sqrt {\dfrac{1}{{{T_2} - {T_1}}}{{\int\limits_{{\text{T1}}}^{{{\text{T}}_{\text{2}}}} {\left[ {V\left( {\text{t}} \right)} \right]} }^{\text{2}}}{\text{dt}}} $-
${\text{V}}\left( {\text{t}} \right){\text{ = }}{{\text{V}}_{\text{o}}}{\text{sin}}\omega t$
Where
${{\text{V}}_{\text{o}}}$= peak voltage
V (t) = function of voltage
From above two equations we have
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}{{\int\limits_{{{\text{T}}_1}}^{{{\text{T}}_{\text{2}}}} {\left[ {{{\text{V}}_{\text{o}}}{\text{sin}}\omega {\text{t}}} \right]} }^{\text{2}}}{\text{dt}}} $
On simplifying we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\int\limits_{{{\text{T}}_{\text{1}}}}^{{{\text{T}}_{\text{2}}}} {{\text{si}}{{\text{n}}^{\text{2}}}(\omega t)dt} } $
Using trigonometry transformation so that integration become easy we have, ${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\int\limits_{{{\text{T}}_{\text{1}}}}^{{{\text{T}}_{\text{2}}}} {\dfrac{{1 - \cos \left( {2\omega t} \right)}}{2}{\text{dt}}} } $
On integrating, we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\left[ {\dfrac{t}{2} - \dfrac{{\sin \left( {2\omega t} \right)}}{{4\omega }}} \right]} _{{T_1}}^{{T_2}}$,
But since the interval is a whole number of complete cycles (as per definition of R.M.S. value), the value of $\sin $function will be zero on a complete cycle.
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\left[ {\dfrac{t}{2}} \right]} _{{T_1}}^{{T_2}}$
On putting the values we have
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\dfrac{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}{{\text{2}}}} $
Finally we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\dfrac{{{{\text{V}}_ \circ }}}{{\sqrt {\text{2}} }}$
Therefore the above equation is the correct relation between peak voltage and R.M.S. voltage of A.C.
Note:For calculation of R.M.S. voltage we can also use a graphical method in which a sinusoidal function graph is drawn between the voltage and time because the voltage in ac circuit varies sinusoidal. The average value of current as well as voltage over one cycle is zero because the area under the respective graph vs time above and under the y-axis are equal.
Complete step-by-step answer:
According to question
We use analytical methods for calculation of R.M.S. value of voltage.
We know that the R.M.S. value of a function of a physical quantity is the square root of the arithmetic mean of the squares of the values of voltage.
Therefore according to the definition general equation for R.M.S. value of any continuous function V(t) defined over a time interval $T_1$ ≤ t ≤ $T_2$ is given by
Similarly, we can find R.M.S. value of voltage by using its general form as a function which is given as: ${V_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\sqrt {\dfrac{1}{{{T_2} - {T_1}}}{{\int\limits_{{\text{T1}}}^{{{\text{T}}_{\text{2}}}} {\left[ {V\left( {\text{t}} \right)} \right]} }^{\text{2}}}{\text{dt}}} $-
${\text{V}}\left( {\text{t}} \right){\text{ = }}{{\text{V}}_{\text{o}}}{\text{sin}}\omega t$
Where
${{\text{V}}_{\text{o}}}$= peak voltage
V (t) = function of voltage
From above two equations we have
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}{{\int\limits_{{{\text{T}}_1}}^{{{\text{T}}_{\text{2}}}} {\left[ {{{\text{V}}_{\text{o}}}{\text{sin}}\omega {\text{t}}} \right]} }^{\text{2}}}{\text{dt}}} $
On simplifying we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\int\limits_{{{\text{T}}_{\text{1}}}}^{{{\text{T}}_{\text{2}}}} {{\text{si}}{{\text{n}}^{\text{2}}}(\omega t)dt} } $
Using trigonometry transformation so that integration become easy we have, ${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\int\limits_{{{\text{T}}_{\text{1}}}}^{{{\text{T}}_{\text{2}}}} {\dfrac{{1 - \cos \left( {2\omega t} \right)}}{2}{\text{dt}}} } $
On integrating, we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\left[ {\dfrac{t}{2} - \dfrac{{\sin \left( {2\omega t} \right)}}{{4\omega }}} \right]} _{{T_1}}^{{T_2}}$,
But since the interval is a whole number of complete cycles (as per definition of R.M.S. value), the value of $\sin $function will be zero on a complete cycle.
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\left[ {\dfrac{t}{2}} \right]} _{{T_1}}^{{T_2}}$
On putting the values we have
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\dfrac{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}{{\text{2}}}} $
Finally we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\dfrac{{{{\text{V}}_ \circ }}}{{\sqrt {\text{2}} }}$
Therefore the above equation is the correct relation between peak voltage and R.M.S. voltage of A.C.
Note:For calculation of R.M.S. voltage we can also use a graphical method in which a sinusoidal function graph is drawn between the voltage and time because the voltage in ac circuit varies sinusoidal. The average value of current as well as voltage over one cycle is zero because the area under the respective graph vs time above and under the y-axis are equal.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE