Answer
Verified
462.3k+ views
Hint:The R.M.S. value of a function of a physical quantity is the square root of the arithmetic mean of the squares of the values of voltage while peak voltage is the maximum value of voltage. In order to find the relation between them use basic relation of general voltage and peak voltage as function to calculate the R.M.S. value of voltage.
Complete step-by-step answer:
According to question
We use analytical methods for calculation of R.M.S. value of voltage.
We know that the R.M.S. value of a function of a physical quantity is the square root of the arithmetic mean of the squares of the values of voltage.
Therefore according to the definition general equation for R.M.S. value of any continuous function V(t) defined over a time interval $T_1$ ≤ t ≤ $T_2$ is given by
Similarly, we can find R.M.S. value of voltage by using its general form as a function which is given as: ${V_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\sqrt {\dfrac{1}{{{T_2} - {T_1}}}{{\int\limits_{{\text{T1}}}^{{{\text{T}}_{\text{2}}}} {\left[ {V\left( {\text{t}} \right)} \right]} }^{\text{2}}}{\text{dt}}} $-
${\text{V}}\left( {\text{t}} \right){\text{ = }}{{\text{V}}_{\text{o}}}{\text{sin}}\omega t$
Where
${{\text{V}}_{\text{o}}}$= peak voltage
V (t) = function of voltage
From above two equations we have
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}{{\int\limits_{{{\text{T}}_1}}^{{{\text{T}}_{\text{2}}}} {\left[ {{{\text{V}}_{\text{o}}}{\text{sin}}\omega {\text{t}}} \right]} }^{\text{2}}}{\text{dt}}} $
On simplifying we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\int\limits_{{{\text{T}}_{\text{1}}}}^{{{\text{T}}_{\text{2}}}} {{\text{si}}{{\text{n}}^{\text{2}}}(\omega t)dt} } $
Using trigonometry transformation so that integration become easy we have, ${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\int\limits_{{{\text{T}}_{\text{1}}}}^{{{\text{T}}_{\text{2}}}} {\dfrac{{1 - \cos \left( {2\omega t} \right)}}{2}{\text{dt}}} } $
On integrating, we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\left[ {\dfrac{t}{2} - \dfrac{{\sin \left( {2\omega t} \right)}}{{4\omega }}} \right]} _{{T_1}}^{{T_2}}$,
But since the interval is a whole number of complete cycles (as per definition of R.M.S. value), the value of $\sin $function will be zero on a complete cycle.
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\left[ {\dfrac{t}{2}} \right]} _{{T_1}}^{{T_2}}$
On putting the values we have
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\dfrac{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}{{\text{2}}}} $
Finally we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\dfrac{{{{\text{V}}_ \circ }}}{{\sqrt {\text{2}} }}$
Therefore the above equation is the correct relation between peak voltage and R.M.S. voltage of A.C.
Note:For calculation of R.M.S. voltage we can also use a graphical method in which a sinusoidal function graph is drawn between the voltage and time because the voltage in ac circuit varies sinusoidal. The average value of current as well as voltage over one cycle is zero because the area under the respective graph vs time above and under the y-axis are equal.
Complete step-by-step answer:
According to question
We use analytical methods for calculation of R.M.S. value of voltage.
We know that the R.M.S. value of a function of a physical quantity is the square root of the arithmetic mean of the squares of the values of voltage.
Therefore according to the definition general equation for R.M.S. value of any continuous function V(t) defined over a time interval $T_1$ ≤ t ≤ $T_2$ is given by
Similarly, we can find R.M.S. value of voltage by using its general form as a function which is given as: ${V_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\sqrt {\dfrac{1}{{{T_2} - {T_1}}}{{\int\limits_{{\text{T1}}}^{{{\text{T}}_{\text{2}}}} {\left[ {V\left( {\text{t}} \right)} \right]} }^{\text{2}}}{\text{dt}}} $-
${\text{V}}\left( {\text{t}} \right){\text{ = }}{{\text{V}}_{\text{o}}}{\text{sin}}\omega t$
Where
${{\text{V}}_{\text{o}}}$= peak voltage
V (t) = function of voltage
From above two equations we have
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}{{\int\limits_{{{\text{T}}_1}}^{{{\text{T}}_{\text{2}}}} {\left[ {{{\text{V}}_{\text{o}}}{\text{sin}}\omega {\text{t}}} \right]} }^{\text{2}}}{\text{dt}}} $
On simplifying we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\int\limits_{{{\text{T}}_{\text{1}}}}^{{{\text{T}}_{\text{2}}}} {{\text{si}}{{\text{n}}^{\text{2}}}(\omega t)dt} } $
Using trigonometry transformation so that integration become easy we have, ${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\int\limits_{{{\text{T}}_{\text{1}}}}^{{{\text{T}}_{\text{2}}}} {\dfrac{{1 - \cos \left( {2\omega t} \right)}}{2}{\text{dt}}} } $
On integrating, we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\left[ {\dfrac{t}{2} - \dfrac{{\sin \left( {2\omega t} \right)}}{{4\omega }}} \right]} _{{T_1}}^{{T_2}}$,
But since the interval is a whole number of complete cycles (as per definition of R.M.S. value), the value of $\sin $function will be zero on a complete cycle.
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\left[ {\dfrac{t}{2}} \right]} _{{T_1}}^{{T_2}}$
On putting the values we have
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\dfrac{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}{{\text{2}}}} $
Finally we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\dfrac{{{{\text{V}}_ \circ }}}{{\sqrt {\text{2}} }}$
Therefore the above equation is the correct relation between peak voltage and R.M.S. voltage of A.C.
Note:For calculation of R.M.S. voltage we can also use a graphical method in which a sinusoidal function graph is drawn between the voltage and time because the voltage in ac circuit varies sinusoidal. The average value of current as well as voltage over one cycle is zero because the area under the respective graph vs time above and under the y-axis are equal.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE