
Show that:
(i) ${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$
(ii)${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$
(iii)${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 2mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2}$
(iv)${\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} = 48p{q^2}$
(v)$\left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) = 0$
Answer
621.9k+ views
Hint: The given statements resemble the following algebraic identities.
${\left( {a + b} \right)^2} - 4ab = {\left( {a - b} \right)^2}$, ${\left( {a - b} \right)^2} + 4ab = {\left( {a + b} \right)^2}$, ${\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab$
Use these to prove the given statements.
Let us prove the statements one by one using the identities.
(i) ${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$
We know that, ${\left( {a + b} \right)^2} - 4ab = {\left( {a - b} \right)^2}$ …(1)
Let us prove this identity first.
LHS=${\left( {a + b} \right)^2} - 4ab$
Expand the brackets using the identity ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$
= {a^2} + {b^2} + 2ab - 4ab \\
= {a^2} + {b^2} - 2ab \\
$
We know that${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$. Using this in the previous step,
$ = {\left( {a - b} \right)^2}$
=RHS
Hence, the identity is proved. Now let us use this to prove the given statement.
${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$ is the given statement to be proved.
LHS$ = {\left( {3x + 7} \right)^2} - 84x$
Using identity (1) here, we find that $a = 3x,b = 7$
Substituting it in the LHS of (1) and using the identity, we get
\[
LHS = {\left( {3x + 7} \right)^2} - 4\left( {3x} \right)\left( 7 \right) \\
= {\left( {3x + 7} \right)^2} - 84x \\
= {\left( {3x - 7} \right)^2} \\
= RHS \\
\]
Hence, ${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$is proved.
(ii)${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$
We know that, ${\left( {a - b} \right)^2} + 4ab = {\left( {a + b} \right)^2}$ …(2)
Let us prove this identity first.
LHS=${\left( {a - b} \right)^2} + 4ab$
Expand the brackets using the identity ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$
= {a^2} + {b^2} - 2ab + 4ab \\
= {a^2} + {b^2} + 2ab \\
$
We know that${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. Using this in the previous step,
$ = {\left( {a + b} \right)^2}$
=RHS
Hence, the identity is proved. Now let us use this to prove the given statement.
${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$ is the given statement to be proved.
LHS$ = {\left( {9p - 5q} \right)^2} + 180pq$
Using identity (2) here, we find that $a = 9p,b = 5q$
Substituting it in the LHS of (2) and using the identity, we get
\[
LHS = {\left( {9p - 5q} \right)^2} + 4\left( {9p} \right)\left( {5q} \right) \\
= {\left( {9p - 5q} \right)^2} + 180pq \\
= {\left( {9p + 5q} \right)^2} \\
= RHS \\
\]
Hence, ${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$is proved.
(iii)${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 2mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2}$
We know that, ${\left( {a - b} \right)^2} + 4ab = {\left( {a + b} \right)^2}$
We have already proved this identity.
Using this identity here, we find that $a = \dfrac{4}{3}m,b = \dfrac{3}{4}n$
Substituting it in the LHS of (2) and using the identity, we get
\[
LHS = {\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 4\left( {\dfrac{4}{3}m} \right)\left( {\dfrac{3}{4}n} \right) \\
= {\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 4mn \\
= {\left( {\dfrac{4}{3}m + \dfrac{3}{4}n} \right)^2} \\
= \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2} + 2\left( {\dfrac{4}{3}m} \right)\left( {\dfrac{3}{4}n} \right) \\
= \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2} + 2mn \\
\]
Now we have proved ${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 4mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2} + 2mn$
Rearranging it we get,
${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 2mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2}$
Hence, ${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$is proved.
(iv)${\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} = 48p{q^2}$
From identity (2), by rearranging it we get,
${\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab$ …(3)
Using identity (3) here, we find that $a = 4pq,b = 3q$
Substituting it in the LHS of (3) and using the identity, we get
$
{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = {\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} \\
= 4\left( {4pq} \right)\left( {3q} \right) \\
= 48p{q^2} \\
= RHS \\
$
Hence,${\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} = 48p{q^2}$is proved.
(v)$\left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) = 0$
We know that, $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ …(4)
Using this identity, we need to open the brackets for the LHS of the given statement.
$
LHS = \left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) \\
= {a^2} - {b^2} + {b^2} - {c^2} + {c^2} - {a^2} \\
$
After cancelling the terms, we get
$LHS = 0 = RHS$
Hence,$\left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) = 0$is proved.
Note: These statements can also be proved without the use of the identities (1), (2) and (3) by just expanding the brackets and by simplifying it. But it would have been a little lengthier process than by using the identities.
${\left( {a + b} \right)^2} - 4ab = {\left( {a - b} \right)^2}$, ${\left( {a - b} \right)^2} + 4ab = {\left( {a + b} \right)^2}$, ${\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab$
Use these to prove the given statements.
Let us prove the statements one by one using the identities.
(i) ${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$
We know that, ${\left( {a + b} \right)^2} - 4ab = {\left( {a - b} \right)^2}$ …(1)
Let us prove this identity first.
LHS=${\left( {a + b} \right)^2} - 4ab$
Expand the brackets using the identity ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$
= {a^2} + {b^2} + 2ab - 4ab \\
= {a^2} + {b^2} - 2ab \\
$
We know that${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$. Using this in the previous step,
$ = {\left( {a - b} \right)^2}$
=RHS
Hence, the identity is proved. Now let us use this to prove the given statement.
${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$ is the given statement to be proved.
LHS$ = {\left( {3x + 7} \right)^2} - 84x$
Using identity (1) here, we find that $a = 3x,b = 7$
Substituting it in the LHS of (1) and using the identity, we get
\[
LHS = {\left( {3x + 7} \right)^2} - 4\left( {3x} \right)\left( 7 \right) \\
= {\left( {3x + 7} \right)^2} - 84x \\
= {\left( {3x - 7} \right)^2} \\
= RHS \\
\]
Hence, ${\left( {3x + 7} \right)^2} - 84x = {\left( {3x - 7} \right)^2}$is proved.
(ii)${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$
We know that, ${\left( {a - b} \right)^2} + 4ab = {\left( {a + b} \right)^2}$ …(2)
Let us prove this identity first.
LHS=${\left( {a - b} \right)^2} + 4ab$
Expand the brackets using the identity ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$
= {a^2} + {b^2} - 2ab + 4ab \\
= {a^2} + {b^2} + 2ab \\
$
We know that${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. Using this in the previous step,
$ = {\left( {a + b} \right)^2}$
=RHS
Hence, the identity is proved. Now let us use this to prove the given statement.
${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$ is the given statement to be proved.
LHS$ = {\left( {9p - 5q} \right)^2} + 180pq$
Using identity (2) here, we find that $a = 9p,b = 5q$
Substituting it in the LHS of (2) and using the identity, we get
\[
LHS = {\left( {9p - 5q} \right)^2} + 4\left( {9p} \right)\left( {5q} \right) \\
= {\left( {9p - 5q} \right)^2} + 180pq \\
= {\left( {9p + 5q} \right)^2} \\
= RHS \\
\]
Hence, ${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$is proved.
(iii)${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 2mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2}$
We know that, ${\left( {a - b} \right)^2} + 4ab = {\left( {a + b} \right)^2}$
We have already proved this identity.
Using this identity here, we find that $a = \dfrac{4}{3}m,b = \dfrac{3}{4}n$
Substituting it in the LHS of (2) and using the identity, we get
\[
LHS = {\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 4\left( {\dfrac{4}{3}m} \right)\left( {\dfrac{3}{4}n} \right) \\
= {\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 4mn \\
= {\left( {\dfrac{4}{3}m + \dfrac{3}{4}n} \right)^2} \\
= \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2} + 2\left( {\dfrac{4}{3}m} \right)\left( {\dfrac{3}{4}n} \right) \\
= \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2} + 2mn \\
\]
Now we have proved ${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 4mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2} + 2mn$
Rearranging it we get,
${\left( {\dfrac{4}{3}m - \dfrac{3}{4}n} \right)^2} + 2mn = \dfrac{{16}}{9}{m^2} + \dfrac{9}{{16}}{n^2}$
Hence, ${\left( {9p - 5q} \right)^2} + 180pq = {\left( {9p + 5q} \right)^2}$is proved.
(iv)${\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} = 48p{q^2}$
From identity (2), by rearranging it we get,
${\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab$ …(3)
Using identity (3) here, we find that $a = 4pq,b = 3q$
Substituting it in the LHS of (3) and using the identity, we get
$
{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = {\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} \\
= 4\left( {4pq} \right)\left( {3q} \right) \\
= 48p{q^2} \\
= RHS \\
$
Hence,${\left( {4pq + 3q} \right)^2} - {\left( {4pq - 3q} \right)^2} = 48p{q^2}$is proved.
(v)$\left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) = 0$
We know that, $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ …(4)
Using this identity, we need to open the brackets for the LHS of the given statement.
$
LHS = \left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) \\
= {a^2} - {b^2} + {b^2} - {c^2} + {c^2} - {a^2} \\
$
After cancelling the terms, we get
$LHS = 0 = RHS$
Hence,$\left( {a - b} \right)\left( {a + b} \right) + \left( {b - c} \right)\left( {b + c} \right) + \left( {c - a} \right)\left( {c + a} \right) = 0$is proved.
Note: These statements can also be proved without the use of the identities (1), (2) and (3) by just expanding the brackets and by simplifying it. But it would have been a little lengthier process than by using the identities.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


