
Show that the coefficient of middle term of ${{\left( 1+x \right)}^{2n}}$ is equal to the sum of coefficient of the two middle term of ${{\left( 1+x \right)}^{2n-1}}$
Answer
521.7k+ views
Hint: Try to use the binomial expansion formula. Note that the middle term of ‘m’ numbers is
$\dfrac{m+1}{2}$ if m is odd, or $\dfrac{m}{2}$ and $\dfrac{m}{2}+1$ if m is even.
Complete step-by-step answer:
We know that by binomial formula,
${{\left( 1+x \right)}^{m}}=C_{0}^{m}{{x}^{m}}+C_{1}^{m}{{x}^{m-1}}+......+C_{m}^{m}{{x}^{0}}.....\left( 1 \right)$
Therefore applying this to the given expression ${{\left( 1+x \right)}^{2n}}$, we get
${{\left( 1+x \right)}^{2n}}=C_{0}^{2n}{{x}^{2n}}+C_{1}^{2n}{{x}^{2n-1}}+......+C_{2n}^{2n}{{x}^{0}}.....\left( 2 \right)$
Also, number of terms in ‘m’ power is m+1
Therefore, the total number of terms = 2n+1 i.e., odd number.
So, the middle term is given by, ${{\left( \dfrac{2n+1+1}{2} \right)}^{th}}$ term.
That is,
${{\left( \dfrac{2(n+1)}{2} \right)}^{th}}={{(n+1)}^{th}}$
So, the middle term of ${{\left( 1+x \right)}^{2n}}$ is the (n+1)th term. It is given by,
$C_{n}^{2n}{{x}^{n}}............\left( 3 \right)$
We know the coefficient of the kth term is given by $C_{k-1}^{2n}$.
Therefore the coefficient of the (n+1)th is,
$C_{n}^{2n}=\dfrac{\left( 2n \right)!}{\left( 2n-n \right)!\left( n \right)!}..........\left( 4 \right)$
Now consider the expansion of ${{\left( 1+x \right)}^{2n-1}}$ .
It contains (2n-1+1)=2n terms, this is an even number.
Therefore, middle terms of even numbers are n and (n+1)th terms.
So, the middle terms of ${{\left( 1+x \right)}^{2n-1}}$ are given by,
nth term: $C_{n-1}^{2n-1}{{x}^{n+1}}$
(n+1)th term: $C_{n}^{2n-1}{{x}^{n}}$
Now the coefficient of nth term =$C_{n-1}^{2n-1}.........\left( 5 \right)$
Coefficient of (n+1)th term = $C_{n}^{2n-1}.........\left( 6 \right)$
Adding equation (5) and (6), we get
\[C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!}+\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!}........\left( 7 \right)\]
Here we have used the formula,
$C_{i}^{m}=\dfrac{m!}{\left( m-1 \right)i!}$ where $i!=i\left( i-1 \right)\left( i-2 \right).....1$
Solving equation (7), we get
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=2\left( \dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!} \right)$
Multiply numerator and denominator by n, the above equation can be written as
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{2n\left( 2n-1 \right)!}{n\left( n-1 \right)!n!}$
From the definition of ‘!’ (Factorial) we have, 2n(2n-1)! = (2n)! and n(n-1)! = n!, so the above equation can be written as
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{\left( 2n \right)!}{n!n!}$
Now ‘n’ can be written as ‘2n-n’, so the above equation can be written as,
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{\left( 2n \right)!}{\left( 2n-n \right)!\left( n \right)!}$
Comparing this with equation (4), we get
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=C_{n}^{2n}$
So, the coefficient of middle term of ${{\left( 1+x \right)}^{2n}}$ is equal to the sum of coefficients of the two middle terms of ${{\left( 1+x \right)}^{2n-1}}$.
Hence, proved
Note: Students often think of power as a number of terms. This is false, for example, \[{{\left( 1+x \right)}^{0}}\] it has 1 term but the power is 0. ${{\left( 1+x \right)}^{1}}$has 2 terms and not 1 term.
Also, the kth term is not $C_{k}^{m}{{I}^{k}}$ , but $C_{2-1}^{m}{{I}^{k}}$.
$\dfrac{m+1}{2}$ if m is odd, or $\dfrac{m}{2}$ and $\dfrac{m}{2}+1$ if m is even.
Complete step-by-step answer:
We know that by binomial formula,
${{\left( 1+x \right)}^{m}}=C_{0}^{m}{{x}^{m}}+C_{1}^{m}{{x}^{m-1}}+......+C_{m}^{m}{{x}^{0}}.....\left( 1 \right)$
Therefore applying this to the given expression ${{\left( 1+x \right)}^{2n}}$, we get
${{\left( 1+x \right)}^{2n}}=C_{0}^{2n}{{x}^{2n}}+C_{1}^{2n}{{x}^{2n-1}}+......+C_{2n}^{2n}{{x}^{0}}.....\left( 2 \right)$
Also, number of terms in ‘m’ power is m+1
Therefore, the total number of terms = 2n+1 i.e., odd number.
So, the middle term is given by, ${{\left( \dfrac{2n+1+1}{2} \right)}^{th}}$ term.
That is,
${{\left( \dfrac{2(n+1)}{2} \right)}^{th}}={{(n+1)}^{th}}$
So, the middle term of ${{\left( 1+x \right)}^{2n}}$ is the (n+1)th term. It is given by,
$C_{n}^{2n}{{x}^{n}}............\left( 3 \right)$
We know the coefficient of the kth term is given by $C_{k-1}^{2n}$.
Therefore the coefficient of the (n+1)th is,
$C_{n}^{2n}=\dfrac{\left( 2n \right)!}{\left( 2n-n \right)!\left( n \right)!}..........\left( 4 \right)$
Now consider the expansion of ${{\left( 1+x \right)}^{2n-1}}$ .
It contains (2n-1+1)=2n terms, this is an even number.
Therefore, middle terms of even numbers are n and (n+1)th terms.
So, the middle terms of ${{\left( 1+x \right)}^{2n-1}}$ are given by,
nth term: $C_{n-1}^{2n-1}{{x}^{n+1}}$
(n+1)th term: $C_{n}^{2n-1}{{x}^{n}}$
Now the coefficient of nth term =$C_{n-1}^{2n-1}.........\left( 5 \right)$
Coefficient of (n+1)th term = $C_{n}^{2n-1}.........\left( 6 \right)$
Adding equation (5) and (6), we get
\[C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!}+\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!}........\left( 7 \right)\]
Here we have used the formula,
$C_{i}^{m}=\dfrac{m!}{\left( m-1 \right)i!}$ where $i!=i\left( i-1 \right)\left( i-2 \right).....1$
Solving equation (7), we get
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=2\left( \dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!} \right)$
Multiply numerator and denominator by n, the above equation can be written as
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{2n\left( 2n-1 \right)!}{n\left( n-1 \right)!n!}$
From the definition of ‘!’ (Factorial) we have, 2n(2n-1)! = (2n)! and n(n-1)! = n!, so the above equation can be written as
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{\left( 2n \right)!}{n!n!}$
Now ‘n’ can be written as ‘2n-n’, so the above equation can be written as,
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{\left( 2n \right)!}{\left( 2n-n \right)!\left( n \right)!}$
Comparing this with equation (4), we get
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=C_{n}^{2n}$
So, the coefficient of middle term of ${{\left( 1+x \right)}^{2n}}$ is equal to the sum of coefficients of the two middle terms of ${{\left( 1+x \right)}^{2n-1}}$.
Hence, proved
Note: Students often think of power as a number of terms. This is false, for example, \[{{\left( 1+x \right)}^{0}}\] it has 1 term but the power is 0. ${{\left( 1+x \right)}^{1}}$has 2 terms and not 1 term.
Also, the kth term is not $C_{k}^{m}{{I}^{k}}$ , but $C_{2-1}^{m}{{I}^{k}}$.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
