Answer
Verified
428.7k+ views
Hint:
This question can be solved by using matrices and determinants. We will use matrix formulas and then try to find whether the given equations are consistent or not. Then, we will use the matrix method further, to find the required solution. Also, if the determinant is 0 then either the equations are inconsistent or they have infinitely many solutions.
Complete step by step solution:
In the given question, we have,
\[x + y + z = 6\]
\[x + 2y + 3z = 14\]
\[x + 4y + 7z = 30\]
Now, writing these 3 equations as \[AX = B\], here, \[A = \left[ {\begin{array}{*{20}{l}}1&1&1\\1&2&3\\1&4&7\end{array}} \right]\] , \[X = \left[ \begin{array}{l}x\\y\\z\end{array} \right]\] and \[B = \left[ \begin{array}{l}6\\14\\30\end{array} \right]\].
Hence, \[AX = B\] can be written as:
\[\left[ {\begin{array}{*{20}{l}}1&1&1\\1&2&3\\1&4&7\end{array}} \right].\left[ \begin{array}{l}x\\y\\z\end{array} \right] = \left[ \begin{array}{l}6\\14\\30\end{array} \right]\]
Now, first of all, we are required to show whether these linear equations are consistent or not.
Hence, we will find the determinant,
\[\left| A \right| = \left| {\begin{array}{*{20}{l}}1&1&1\\1&2&3\\1&4&7\end{array}} \right|\]
Now, solving the determinant, we get,
\[\left| A \right| = \left( {2 \times 7 - 4 \times 3} \right) - 1\left( {1 \times 7 - 1 \times 3} \right) + 1\left( {1 \times 4 - 1 \times 2} \right)\]
Simplifying the expression, we get
\[ \Rightarrow \left| A \right| = \left( {14 - 12} \right) - \left( {7 - 3} \right) + \left( {4 - 2} \right)\]
\[ \Rightarrow \left| A \right| = 2 - 4 + 2\]
Adding and subtracting the terms, we get
\[ \Rightarrow \left| A \right| = 4 - 4 = 0\]
Since, the determinant of A is equal to 0
Hence, either the equations are inconsistent or they have infinitely many solutions.
Now, we will find the Co-factors of the elements \[{a_{ij}}\] in the matrix A.
\[{A_{11}} = {\left( { - 1} \right)^{1 + 1}}\left| \begin{array}{l}2{\rm{ }}3\\4{\rm{ 7}}\end{array} \right| = 14 - 12 = 2\]
\[{A_{12}} = {\left( { - 1} \right)^{1 + 2}}\left| \begin{array}{l}{\rm{1 }}3\\{\rm{1 7}}\end{array} \right| = - 4\]
\[{A_{13}} = {\left( { - 1} \right)^{1 + 3}}\left| \begin{array}{l}{\rm{1 2}}\\{\rm{1 4}}\end{array} \right| = 4 - 2 = 2\]
\[{A_{21}} = {\left( { - 1} \right)^{2 + 1}}\left| \begin{array}{l}{\rm{1 1}}\\{\rm{4 7}}\end{array} \right| = - 3\]
\[{A_{22}} = {\left( { - 1} \right)^{2 + 2}}\left| \begin{array}{l}{\rm{1 1}}\\{\rm{1 7}}\end{array} \right| = 6\]
\[{A_{23}} = {\left( { - 1} \right)^{2 + 3}}\left| \begin{array}{l}{\rm{1 1}}\\{\rm{1 4}}\end{array} \right| = - 3\]
\[{A_{31}} = {\left( { - 1} \right)^{3 + 1}}\left| \begin{array}{l}{\rm{1 1}}\\{\rm{2 3}}\end{array} \right| = 1\]
\[{A_{32}} = {\left( { - 1} \right)^{3 + 2}}\left| \begin{array}{l}{\rm{1 1}}\\{\rm{1 3}}\end{array} \right| = - 2\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left| \begin{array}{l}{\rm{1 1}}\\{\rm{1 2}}\end{array} \right| = 1\]
Now,
\[adj{\rm{A}} = {\left[ {{\rm{cofactor}}} \right]^{\rm{T}}}\]
\[ \Rightarrow adj{\rm{A}} = {\left[ {\begin{array}{*{20}{l}}2&{ - 4}&2\\{ - 3}&6&{ - 3}\\1&{ - 2}&1\end{array}} \right]^{\rm{T}}}\]
\[ \Rightarrow adj{\rm{A}} = \left[ {\begin{array}{*{20}{l}}2&{ - 3}&1\\{ - 4}&6&{ - 2}\\2&{ - 3}&1\end{array}} \right]\]
Now, we will find \[\left( {adj{\rm{A}}} \right){\rm{B}}\].
\[\left( {adj{\rm{A}}} \right){\rm{B}} = \left[ {\begin{array}{*{20}{l}}2&{ - 3}&1\\{ - 4}&6&{ - 2}\\2&{ - 3}&1\end{array}} \right].\left[ \begin{array}{l}6\\14\\30\end{array} \right]\]
Solving the matrix further,
\[ \Rightarrow \left( {adj{\rm{A}}} \right){\rm{B}} = \left[ \begin{array}{l}12 - 18 + 6\\ - 24 + 84 - 60\\12 - 42 + 30\end{array} \right] = \left[ \begin{array}{l}0\\0\\0\end{array} \right]\]
Since, \[\left( {adj{\rm{A}}} \right){\rm{B}}\] is equal to 0, hence, the linear equations are inconsistent and have infinitely many solutions.
Now, we will substitute the value of \[z = k\] in the \[x + y + z = 6\] and \[x + 2y + 3z = 14\]. Therefore, we get
\[x + y + k = 6\]
\[ \Rightarrow x + y = 6 - k\]……………………….\[\left( 1 \right)\]
\[x + 2y + 3k = 14\]
\[ \Rightarrow x + 2y = 14 - 3k\]…………………..\[\left( 2 \right)\]
Now, writing equation \[\left( 1 \right)\] and \[\left( 2 \right)\] in the form of \[AX = B\]
Where, \[A = \left[ \begin{array}{l}{\rm{1 1}}\\{\rm{1 2}}\end{array} \right]\], \[X = \left[ \begin{array}{l}x\\y\end{array} \right]\] and \[B = \left[ \begin{array}{l}6 - k\\14 - 3k\end{array} \right]\]
Now, we will find the determinant of A. Therefore, we get
\[\left| A \right| = \left| \begin{array}{l}{\rm{1 1}}\\{\rm{1 2}}\end{array} \right|\]
Simplifying the determinant, we get
\[ \Rightarrow \left| A \right| = \left( {2 - 1} \right) = 1\]
Hence, the determinant is not equal to 0.
Therefore, it is invertible.
Now, Cofactors:
\[{C_{11}} = {\left( { - 1} \right)^{1 + 1}} \cdot \left( 2 \right) = 2\]
\[{C_{12}} = {\left( { - 1} \right)^{1 + 2}} \cdot \left( 1 \right) = - 1\]
\[{C_{21}} = {\left( { - 1} \right)^{2 + 1}} \cdot \left( 1 \right) = - 1\]
\[{C_{22}} = {\left( { - 1} \right)^{2 + 2}} \cdot \left( 1 \right) = 1\]
Now,
\[adj{\rm{A}} = {\left[ {\begin{array}{*{20}{l}}2&{ - 1}\\{ - 1}&1\end{array}} \right]^T}\]
\[ \Rightarrow adjA = \left[ {\begin{array}{*{20}{l}}2&{ - 1}\\{ - 1}&1\end{array}} \right]\]
Now,
\[{{\rm{A}}^{{ - 1}}} = \dfrac{1}{{|{\rm{A|}}}}adj{\rm{A}}\]
\[ \Rightarrow {A^{ - 1}} = \dfrac{1}{1}\left[ {\begin{array}{*{20}{l}}2&{ - 1}\\{ - 1}&1\end{array}} \right]\]
Now, as we know,\[X = {A^{ - 1}}B\], so substituting the values, we get
\[X = \left[ {\begin{array}{*{20}{l}}2&{ - 1}\\{ - 1}&1\end{array}} \right]\left[ \begin{array}{l}6 - k\\14 - 3k\end{array} \right]\]
Multiplying the matrix, we get
\[ \Rightarrow X = \left[ \begin{array}{l}12 - 2k - 14 + 3k\\ - 6 + k + 14 - 3k\end{array} \right]\]
Hence,
\[\left[ \begin{array}{l}x\\y\end{array} \right] = \left[ \begin{array}{l}k - 2\\8 - 2k\end{array} \right]\]
Hence, \[x = k - 2\], \[y = 8 - 2k\] and \[z = k\]
Now, putting these values in the third equation, \[x + 4y + 7z = 30\]
\[ \Rightarrow k - 2 + 4\left( {8 - 2k} \right) + 7k = 30\]
\[ \Rightarrow k - 2 + 32 - 8k + 7k = 30\]
\[ \Rightarrow 30 = 30\]
Hence, LHS \[ = \] RHS
Therefore, the values \[x = k - 2\], \[y = 8 - 2k\] and \[z = k\] satisfies all the three equations, where \[k\] is any real number.
Hence, we can find infinitely many solutions using these values.
Note:
This question is of a special type because it is very rare to see that equations have infinitely many solutions. Hence, one must understand this concept very carefully as we have applied the matrix method twice and expressed our answer in terms of a constant \[k\]. Also, as we have to find cofactors, we must choose the plus/minus signs carefully as there are high possibilities of interchanging them and making our answer completely wrong.
This question can be solved by using matrices and determinants. We will use matrix formulas and then try to find whether the given equations are consistent or not. Then, we will use the matrix method further, to find the required solution. Also, if the determinant is 0 then either the equations are inconsistent or they have infinitely many solutions.
Complete step by step solution:
In the given question, we have,
\[x + y + z = 6\]
\[x + 2y + 3z = 14\]
\[x + 4y + 7z = 30\]
Now, writing these 3 equations as \[AX = B\], here, \[A = \left[ {\begin{array}{*{20}{l}}1&1&1\\1&2&3\\1&4&7\end{array}} \right]\] , \[X = \left[ \begin{array}{l}x\\y\\z\end{array} \right]\] and \[B = \left[ \begin{array}{l}6\\14\\30\end{array} \right]\].
Hence, \[AX = B\] can be written as:
\[\left[ {\begin{array}{*{20}{l}}1&1&1\\1&2&3\\1&4&7\end{array}} \right].\left[ \begin{array}{l}x\\y\\z\end{array} \right] = \left[ \begin{array}{l}6\\14\\30\end{array} \right]\]
Now, first of all, we are required to show whether these linear equations are consistent or not.
Hence, we will find the determinant,
\[\left| A \right| = \left| {\begin{array}{*{20}{l}}1&1&1\\1&2&3\\1&4&7\end{array}} \right|\]
Now, solving the determinant, we get,
\[\left| A \right| = \left( {2 \times 7 - 4 \times 3} \right) - 1\left( {1 \times 7 - 1 \times 3} \right) + 1\left( {1 \times 4 - 1 \times 2} \right)\]
Simplifying the expression, we get
\[ \Rightarrow \left| A \right| = \left( {14 - 12} \right) - \left( {7 - 3} \right) + \left( {4 - 2} \right)\]
\[ \Rightarrow \left| A \right| = 2 - 4 + 2\]
Adding and subtracting the terms, we get
\[ \Rightarrow \left| A \right| = 4 - 4 = 0\]
Since, the determinant of A is equal to 0
Hence, either the equations are inconsistent or they have infinitely many solutions.
Now, we will find the Co-factors of the elements \[{a_{ij}}\] in the matrix A.
\[{A_{11}} = {\left( { - 1} \right)^{1 + 1}}\left| \begin{array}{l}2{\rm{ }}3\\4{\rm{ 7}}\end{array} \right| = 14 - 12 = 2\]
\[{A_{12}} = {\left( { - 1} \right)^{1 + 2}}\left| \begin{array}{l}{\rm{1 }}3\\{\rm{1 7}}\end{array} \right| = - 4\]
\[{A_{13}} = {\left( { - 1} \right)^{1 + 3}}\left| \begin{array}{l}{\rm{1 2}}\\{\rm{1 4}}\end{array} \right| = 4 - 2 = 2\]
\[{A_{21}} = {\left( { - 1} \right)^{2 + 1}}\left| \begin{array}{l}{\rm{1 1}}\\{\rm{4 7}}\end{array} \right| = - 3\]
\[{A_{22}} = {\left( { - 1} \right)^{2 + 2}}\left| \begin{array}{l}{\rm{1 1}}\\{\rm{1 7}}\end{array} \right| = 6\]
\[{A_{23}} = {\left( { - 1} \right)^{2 + 3}}\left| \begin{array}{l}{\rm{1 1}}\\{\rm{1 4}}\end{array} \right| = - 3\]
\[{A_{31}} = {\left( { - 1} \right)^{3 + 1}}\left| \begin{array}{l}{\rm{1 1}}\\{\rm{2 3}}\end{array} \right| = 1\]
\[{A_{32}} = {\left( { - 1} \right)^{3 + 2}}\left| \begin{array}{l}{\rm{1 1}}\\{\rm{1 3}}\end{array} \right| = - 2\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left| \begin{array}{l}{\rm{1 1}}\\{\rm{1 2}}\end{array} \right| = 1\]
Now,
\[adj{\rm{A}} = {\left[ {{\rm{cofactor}}} \right]^{\rm{T}}}\]
\[ \Rightarrow adj{\rm{A}} = {\left[ {\begin{array}{*{20}{l}}2&{ - 4}&2\\{ - 3}&6&{ - 3}\\1&{ - 2}&1\end{array}} \right]^{\rm{T}}}\]
\[ \Rightarrow adj{\rm{A}} = \left[ {\begin{array}{*{20}{l}}2&{ - 3}&1\\{ - 4}&6&{ - 2}\\2&{ - 3}&1\end{array}} \right]\]
Now, we will find \[\left( {adj{\rm{A}}} \right){\rm{B}}\].
\[\left( {adj{\rm{A}}} \right){\rm{B}} = \left[ {\begin{array}{*{20}{l}}2&{ - 3}&1\\{ - 4}&6&{ - 2}\\2&{ - 3}&1\end{array}} \right].\left[ \begin{array}{l}6\\14\\30\end{array} \right]\]
Solving the matrix further,
\[ \Rightarrow \left( {adj{\rm{A}}} \right){\rm{B}} = \left[ \begin{array}{l}12 - 18 + 6\\ - 24 + 84 - 60\\12 - 42 + 30\end{array} \right] = \left[ \begin{array}{l}0\\0\\0\end{array} \right]\]
Since, \[\left( {adj{\rm{A}}} \right){\rm{B}}\] is equal to 0, hence, the linear equations are inconsistent and have infinitely many solutions.
Now, we will substitute the value of \[z = k\] in the \[x + y + z = 6\] and \[x + 2y + 3z = 14\]. Therefore, we get
\[x + y + k = 6\]
\[ \Rightarrow x + y = 6 - k\]……………………….\[\left( 1 \right)\]
\[x + 2y + 3k = 14\]
\[ \Rightarrow x + 2y = 14 - 3k\]…………………..\[\left( 2 \right)\]
Now, writing equation \[\left( 1 \right)\] and \[\left( 2 \right)\] in the form of \[AX = B\]
Where, \[A = \left[ \begin{array}{l}{\rm{1 1}}\\{\rm{1 2}}\end{array} \right]\], \[X = \left[ \begin{array}{l}x\\y\end{array} \right]\] and \[B = \left[ \begin{array}{l}6 - k\\14 - 3k\end{array} \right]\]
Now, we will find the determinant of A. Therefore, we get
\[\left| A \right| = \left| \begin{array}{l}{\rm{1 1}}\\{\rm{1 2}}\end{array} \right|\]
Simplifying the determinant, we get
\[ \Rightarrow \left| A \right| = \left( {2 - 1} \right) = 1\]
Hence, the determinant is not equal to 0.
Therefore, it is invertible.
Now, Cofactors:
\[{C_{11}} = {\left( { - 1} \right)^{1 + 1}} \cdot \left( 2 \right) = 2\]
\[{C_{12}} = {\left( { - 1} \right)^{1 + 2}} \cdot \left( 1 \right) = - 1\]
\[{C_{21}} = {\left( { - 1} \right)^{2 + 1}} \cdot \left( 1 \right) = - 1\]
\[{C_{22}} = {\left( { - 1} \right)^{2 + 2}} \cdot \left( 1 \right) = 1\]
Now,
\[adj{\rm{A}} = {\left[ {\begin{array}{*{20}{l}}2&{ - 1}\\{ - 1}&1\end{array}} \right]^T}\]
\[ \Rightarrow adjA = \left[ {\begin{array}{*{20}{l}}2&{ - 1}\\{ - 1}&1\end{array}} \right]\]
Now,
\[{{\rm{A}}^{{ - 1}}} = \dfrac{1}{{|{\rm{A|}}}}adj{\rm{A}}\]
\[ \Rightarrow {A^{ - 1}} = \dfrac{1}{1}\left[ {\begin{array}{*{20}{l}}2&{ - 1}\\{ - 1}&1\end{array}} \right]\]
Now, as we know,\[X = {A^{ - 1}}B\], so substituting the values, we get
\[X = \left[ {\begin{array}{*{20}{l}}2&{ - 1}\\{ - 1}&1\end{array}} \right]\left[ \begin{array}{l}6 - k\\14 - 3k\end{array} \right]\]
Multiplying the matrix, we get
\[ \Rightarrow X = \left[ \begin{array}{l}12 - 2k - 14 + 3k\\ - 6 + k + 14 - 3k\end{array} \right]\]
Hence,
\[\left[ \begin{array}{l}x\\y\end{array} \right] = \left[ \begin{array}{l}k - 2\\8 - 2k\end{array} \right]\]
Hence, \[x = k - 2\], \[y = 8 - 2k\] and \[z = k\]
Now, putting these values in the third equation, \[x + 4y + 7z = 30\]
\[ \Rightarrow k - 2 + 4\left( {8 - 2k} \right) + 7k = 30\]
\[ \Rightarrow k - 2 + 32 - 8k + 7k = 30\]
\[ \Rightarrow 30 = 30\]
Hence, LHS \[ = \] RHS
Therefore, the values \[x = k - 2\], \[y = 8 - 2k\] and \[z = k\] satisfies all the three equations, where \[k\] is any real number.
Hence, we can find infinitely many solutions using these values.
Note:
This question is of a special type because it is very rare to see that equations have infinitely many solutions. Hence, one must understand this concept very carefully as we have applied the matrix method twice and expressed our answer in terms of a constant \[k\]. Also, as we have to find cofactors, we must choose the plus/minus signs carefully as there are high possibilities of interchanging them and making our answer completely wrong.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers