Show that the function f(x) = 2x-|x| is continuous at x = 0.
Answer
Verified
502.2k+ views
Hint: Use the fact that if f(x) is continuous and g(x) is continuous at x= a then so is f(x)+g(x) and f(x)g(x). In the above property take f(x) = 2x and g(x) = -|x|. Use the fact that 2x and –|x| are continuous at x = 0. Alternatively, we can prove that $\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=f\left( 0 \right)$. Alternatively you can draw a graph of f(x) and verify whether f(x) is continuous at x= 0 or not.
Complete step-by-step answer:
We know that g(x) = 2x is continuous for all real x. Hence g(x) is continuous at x = 0.
Also h(x) = -|x| is continuous for all real x. Hence h(x) is also continuous at x= 0.
Hence g(x)+h(x) is also continuous at x=0.
Hence 2x-|x| is also continuous at x = 0.
Hence f(x) continuous at x=0.
Note: [1] Alternatively, we have
$\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,2x-\left| x \right|$
Since for x<0 |x| = -x, we get
$\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,2x+x=\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,3x=0$
$\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,2x-\left| x \right|$
Since for x>0 |x| = x, we get
$\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,2x-x=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,x=0$
f(0) = 2(0)-|0| = 0-0 = 0.
Hence, we have $\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=f\left( 0 \right)$
Hence f(x) is continuous at x = 0.
[2] Alternatively, we can draw the graph of f(x) and verify that f(x) is continuous at x = 0
From the graph, it is clear that f(x) is continuous at x=0.
Complete step-by-step answer:
We know that g(x) = 2x is continuous for all real x. Hence g(x) is continuous at x = 0.
Also h(x) = -|x| is continuous for all real x. Hence h(x) is also continuous at x= 0.
Hence g(x)+h(x) is also continuous at x=0.
Hence 2x-|x| is also continuous at x = 0.
Hence f(x) continuous at x=0.
Note: [1] Alternatively, we have
$\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,2x-\left| x \right|$
Since for x<0 |x| = -x, we get
$\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,2x+x=\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,3x=0$
$\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,2x-\left| x \right|$
Since for x>0 |x| = x, we get
$\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,2x-x=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,x=0$
f(0) = 2(0)-|0| = 0-0 = 0.
Hence, we have $\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=f\left( 0 \right)$
Hence f(x) is continuous at x = 0.
[2] Alternatively, we can draw the graph of f(x) and verify that f(x) is continuous at x = 0
From the graph, it is clear that f(x) is continuous at x=0.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Why is the cell called the structural and functional class 12 biology CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE