Answer
Verified
492k+ views
Hint: Use the fact that if f(x) is continuous and g(x) is continuous at x= a then so is f(x)+g(x) and f(x)g(x). In the above property take f(x) = 2x and g(x) = -|x|. Use the fact that 2x and –|x| are continuous at x = 0. Alternatively, we can prove that $\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=f\left( 0 \right)$. Alternatively you can draw a graph of f(x) and verify whether f(x) is continuous at x= 0 or not.
Complete step-by-step answer:
We know that g(x) = 2x is continuous for all real x. Hence g(x) is continuous at x = 0.
Also h(x) = -|x| is continuous for all real x. Hence h(x) is also continuous at x= 0.
Hence g(x)+h(x) is also continuous at x=0.
Hence 2x-|x| is also continuous at x = 0.
Hence f(x) continuous at x=0.
Note: [1] Alternatively, we have
$\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,2x-\left| x \right|$
Since for x<0 |x| = -x, we get
$\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,2x+x=\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,3x=0$
$\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,2x-\left| x \right|$
Since for x>0 |x| = x, we get
$\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,2x-x=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,x=0$
f(0) = 2(0)-|0| = 0-0 = 0.
Hence, we have $\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=f\left( 0 \right)$
Hence f(x) is continuous at x = 0.
[2] Alternatively, we can draw the graph of f(x) and verify that f(x) is continuous at x = 0
From the graph, it is clear that f(x) is continuous at x=0.
Complete step-by-step answer:
We know that g(x) = 2x is continuous for all real x. Hence g(x) is continuous at x = 0.
Also h(x) = -|x| is continuous for all real x. Hence h(x) is also continuous at x= 0.
Hence g(x)+h(x) is also continuous at x=0.
Hence 2x-|x| is also continuous at x = 0.
Hence f(x) continuous at x=0.
Note: [1] Alternatively, we have
$\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,2x-\left| x \right|$
Since for x<0 |x| = -x, we get
$\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,2x+x=\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,3x=0$
$\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,2x-\left| x \right|$
Since for x>0 |x| = x, we get
$\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,2x-x=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,x=0$
f(0) = 2(0)-|0| = 0-0 = 0.
Hence, we have $\underset{x\to {{0}^{-}}}{\mathop{\text{Lim}}}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\text{Lim}}}\,f\left( x \right)=f\left( 0 \right)$
Hence f(x) is continuous at x = 0.
[2] Alternatively, we can draw the graph of f(x) and verify that f(x) is continuous at x = 0
From the graph, it is clear that f(x) is continuous at x=0.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE