Show that the matrix $A + B$ is symmetric or skew symmetric according as $A$and $B$ are symmetric or skew symmetric.
Answer
Verified
510k+ views
Hint: - Use the properties of matrix transpose and addition of matrix.
Since, ${\left( {A + B} \right)^\prime } = A' + B'$
For any symmetric matrix $M$ we know that $M' = M$.
If both $A$ and $B$ are symmetric.
$ \Rightarrow A' = A\& B' = B$
For $A + B$ matrix, we have
$
\Rightarrow {\left( {A + B} \right)^\prime } = A' + B' \\
\Rightarrow A' + B' = A + B\left[ {\because A' = A\& B' = B} \right] \\
$
$\therefore $$A + B$ is symmetric, as${\left( {A + B} \right)^\prime } = A + B$
For any skew symmetric matrix $M$ we know that $M' = - M$ .
If both $A$ and $B$ are skew symmetric.
$ \Rightarrow A' = - A\& B' = - B$
For $A + B$ matrix, we have
$
\Rightarrow {\left( {A + B} \right)^\prime } = A' + B' \\
\Rightarrow A' + B' = - A - B\left[ {\because A' = A\& B' = B} \right] \\
\Rightarrow - \left( {A + B} \right) \\
$
$\therefore $$A + B$ is skew symmetric, as${\left( {A + B} \right)^\prime } = - \left( {A + B} \right)$
Note: Symmetric matrix is a square matrix that is equal to its transpose. Only a square matrix can be symmetric whereas a matrix is called skew symmetric if and only if it is opposite of its transpose.
Since, ${\left( {A + B} \right)^\prime } = A' + B'$
For any symmetric matrix $M$ we know that $M' = M$.
If both $A$ and $B$ are symmetric.
$ \Rightarrow A' = A\& B' = B$
For $A + B$ matrix, we have
$
\Rightarrow {\left( {A + B} \right)^\prime } = A' + B' \\
\Rightarrow A' + B' = A + B\left[ {\because A' = A\& B' = B} \right] \\
$
$\therefore $$A + B$ is symmetric, as${\left( {A + B} \right)^\prime } = A + B$
For any skew symmetric matrix $M$ we know that $M' = - M$ .
If both $A$ and $B$ are skew symmetric.
$ \Rightarrow A' = - A\& B' = - B$
For $A + B$ matrix, we have
$
\Rightarrow {\left( {A + B} \right)^\prime } = A' + B' \\
\Rightarrow A' + B' = - A - B\left[ {\because A' = A\& B' = B} \right] \\
\Rightarrow - \left( {A + B} \right) \\
$
$\therefore $$A + B$ is skew symmetric, as${\left( {A + B} \right)^\prime } = - \left( {A + B} \right)$
Note: Symmetric matrix is a square matrix that is equal to its transpose. Only a square matrix can be symmetric whereas a matrix is called skew symmetric if and only if it is opposite of its transpose.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
What are the major means of transport Explain each class 12 social science CBSE