
Show that the points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ are equidistant from the plane $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$
Answer
621.3k+ views
Hint: Write the equation of the plane in Cartesian form and the use distance formula of a point from a plane.
The given plane equation is $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$.
The Cartesian form the plane equation is:
$ \Rightarrow 3x + 4y - 12z + 13 = 0$
We have to compare the distance of points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ from this plane.
We know that the distance of a point from a plane is given by the formula:
$ \Rightarrow D = \left| {\dfrac{{ax + by + cz + d}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}} \right|$
Using this formula, the distance of point $\left( {1,1,1} \right)$from the plane $3x + 4y - 12z + 13 = 0$is:
$
\Rightarrow D = \left| {\dfrac{{3\left( 1 \right) + 4\left( 1 \right) - 12\left( 1 \right) + 13}}{{\sqrt {{3^2} + {4^2} + {{\left( {12} \right)}^2}} }}} \right|, \\
\Rightarrow D = \dfrac{{\left| {3 + 4 - 12 + 13} \right|}}{{\sqrt {25 + 144} }}, \\
\Rightarrow D = \dfrac{8}{{13}} \\
$
Similarly, the distance of point $\left( { - 3,0,1} \right)$from the plane $3x + 4y - 12z + 13 = 0$is:
$
\Rightarrow D = \left| {\dfrac{{3\left( { - 3} \right) + 4\left( 0 \right) - 12\left( 1 \right) + 13}}{{\sqrt {{3^2} + {4^2} + {{\left( {12} \right)}^2}} }}} \right|, \\
\Rightarrow D = \dfrac{{\left| { - 9 + 0 - 12 + 13} \right|}}{{\sqrt {25 + 144} }}, \\
\Rightarrow D = \dfrac{{\left| { - 8} \right|}}{{\sqrt {169} }}, \\
$
$ \Rightarrow D = \dfrac{8}{{13}}$
Therefore, the distance of points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ from plane $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$ are equal.
Note: In the distance formula used above, we used modulus sign just to ensure that the distance never comes out as negative. If we are getting its value negative, modulus will turn it positive.
The given plane equation is $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$.
The Cartesian form the plane equation is:
$ \Rightarrow 3x + 4y - 12z + 13 = 0$
We have to compare the distance of points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ from this plane.
We know that the distance of a point from a plane is given by the formula:
$ \Rightarrow D = \left| {\dfrac{{ax + by + cz + d}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}} \right|$
Using this formula, the distance of point $\left( {1,1,1} \right)$from the plane $3x + 4y - 12z + 13 = 0$is:
$
\Rightarrow D = \left| {\dfrac{{3\left( 1 \right) + 4\left( 1 \right) - 12\left( 1 \right) + 13}}{{\sqrt {{3^2} + {4^2} + {{\left( {12} \right)}^2}} }}} \right|, \\
\Rightarrow D = \dfrac{{\left| {3 + 4 - 12 + 13} \right|}}{{\sqrt {25 + 144} }}, \\
\Rightarrow D = \dfrac{8}{{13}} \\
$
Similarly, the distance of point $\left( { - 3,0,1} \right)$from the plane $3x + 4y - 12z + 13 = 0$is:
$
\Rightarrow D = \left| {\dfrac{{3\left( { - 3} \right) + 4\left( 0 \right) - 12\left( 1 \right) + 13}}{{\sqrt {{3^2} + {4^2} + {{\left( {12} \right)}^2}} }}} \right|, \\
\Rightarrow D = \dfrac{{\left| { - 9 + 0 - 12 + 13} \right|}}{{\sqrt {25 + 144} }}, \\
\Rightarrow D = \dfrac{{\left| { - 8} \right|}}{{\sqrt {169} }}, \\
$
$ \Rightarrow D = \dfrac{8}{{13}}$
Therefore, the distance of points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ from plane $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$ are equal.
Note: In the distance formula used above, we used modulus sign just to ensure that the distance never comes out as negative. If we are getting its value negative, modulus will turn it positive.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

