Show that the points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ are equidistant from the plane $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$
Answer
Verified
511.2k+ views
Hint: Write the equation of the plane in Cartesian form and the use distance formula of a point from a plane.
The given plane equation is $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$.
The Cartesian form the plane equation is:
$ \Rightarrow 3x + 4y - 12z + 13 = 0$
We have to compare the distance of points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ from this plane.
We know that the distance of a point from a plane is given by the formula:
$ \Rightarrow D = \left| {\dfrac{{ax + by + cz + d}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}} \right|$
Using this formula, the distance of point $\left( {1,1,1} \right)$from the plane $3x + 4y - 12z + 13 = 0$is:
$
\Rightarrow D = \left| {\dfrac{{3\left( 1 \right) + 4\left( 1 \right) - 12\left( 1 \right) + 13}}{{\sqrt {{3^2} + {4^2} + {{\left( {12} \right)}^2}} }}} \right|, \\
\Rightarrow D = \dfrac{{\left| {3 + 4 - 12 + 13} \right|}}{{\sqrt {25 + 144} }}, \\
\Rightarrow D = \dfrac{8}{{13}} \\
$
Similarly, the distance of point $\left( { - 3,0,1} \right)$from the plane $3x + 4y - 12z + 13 = 0$is:
$
\Rightarrow D = \left| {\dfrac{{3\left( { - 3} \right) + 4\left( 0 \right) - 12\left( 1 \right) + 13}}{{\sqrt {{3^2} + {4^2} + {{\left( {12} \right)}^2}} }}} \right|, \\
\Rightarrow D = \dfrac{{\left| { - 9 + 0 - 12 + 13} \right|}}{{\sqrt {25 + 144} }}, \\
\Rightarrow D = \dfrac{{\left| { - 8} \right|}}{{\sqrt {169} }}, \\
$
$ \Rightarrow D = \dfrac{8}{{13}}$
Therefore, the distance of points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ from plane $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$ are equal.
Note: In the distance formula used above, we used modulus sign just to ensure that the distance never comes out as negative. If we are getting its value negative, modulus will turn it positive.
The given plane equation is $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$.
The Cartesian form the plane equation is:
$ \Rightarrow 3x + 4y - 12z + 13 = 0$
We have to compare the distance of points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ from this plane.
We know that the distance of a point from a plane is given by the formula:
$ \Rightarrow D = \left| {\dfrac{{ax + by + cz + d}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}} \right|$
Using this formula, the distance of point $\left( {1,1,1} \right)$from the plane $3x + 4y - 12z + 13 = 0$is:
$
\Rightarrow D = \left| {\dfrac{{3\left( 1 \right) + 4\left( 1 \right) - 12\left( 1 \right) + 13}}{{\sqrt {{3^2} + {4^2} + {{\left( {12} \right)}^2}} }}} \right|, \\
\Rightarrow D = \dfrac{{\left| {3 + 4 - 12 + 13} \right|}}{{\sqrt {25 + 144} }}, \\
\Rightarrow D = \dfrac{8}{{13}} \\
$
Similarly, the distance of point $\left( { - 3,0,1} \right)$from the plane $3x + 4y - 12z + 13 = 0$is:
$
\Rightarrow D = \left| {\dfrac{{3\left( { - 3} \right) + 4\left( 0 \right) - 12\left( 1 \right) + 13}}{{\sqrt {{3^2} + {4^2} + {{\left( {12} \right)}^2}} }}} \right|, \\
\Rightarrow D = \dfrac{{\left| { - 9 + 0 - 12 + 13} \right|}}{{\sqrt {25 + 144} }}, \\
\Rightarrow D = \dfrac{{\left| { - 8} \right|}}{{\sqrt {169} }}, \\
$
$ \Rightarrow D = \dfrac{8}{{13}}$
Therefore, the distance of points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ from plane $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$ are equal.
Note: In the distance formula used above, we used modulus sign just to ensure that the distance never comes out as negative. If we are getting its value negative, modulus will turn it positive.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE