
Show that the positive vector of the point P, which divides the line joining the points A and B having position vector a and b internally in ratio m: n is \[\overrightarrow P = \dfrac{{m\overrightarrow b + n\overrightarrow a }}{{n + m}}\]
Answer
565.2k+ views
Hint: Position Vector: Position vector is nothing but a straight line whose one end is fixed to a body and the other end is attached to a morning point which is used to describe the position of that body relative to the body.
Triangle law of vector addition: In a triangle, two directions are taken in order while the third one is in the opposite direction. Therefore the sum of 2 sides taken in order is equal to the third side which is taken in the opposite direction.
Complete step-by-step answer:
Let 2 points A & B and P is the point on the line AB and O is the origin then position vector of OA is $\overrightarrow a $ and OB is $\overrightarrow b $ and m:n is the ratio in which P divides A & B and OP will be \[\overrightarrow P \].
Here \[\dfrac{{AP}}{{PB}} = \dfrac{m}{n} - - - - - - - - - - - (i)\]
\[ \Rightarrow \]\[n.AP = m.PB\]
In vector notation, \[n. \overrightarrow {AP} = m.\overrightarrow {PB} - - - - - - - - - - (II)\]
Using triangle law of vector addition in OPA, we get \[\overrightarrow {OP} = \overrightarrow {OA} + \overrightarrow {AP} \]
\[ \Rightarrow \]\[\overrightarrow {AP} = \overrightarrow {OP} - \overrightarrow {OA} - - - - - - - - - - - (III)\]
And in OPB= \[\overrightarrow {OB} = \overrightarrow {OP} + \overrightarrow {PB} \]
\[ \Rightarrow \]\[\overrightarrow {PB} = \overrightarrow {OB} - \overrightarrow {OP} - - - - - - - - - - - (IV)\]
Put the value of \[\overrightarrow {AP} \] and \[\overrightarrow {PB} \] from \[(III)\]& \[(IV)\] in \[(II)\]
\[ \Rightarrow \]\[n\left( {\overrightarrow {OP} - \overrightarrow {OA} } \right) = m\left( {\overrightarrow {OB} - \overrightarrow {OP} } \right)\]
\[ \Rightarrow \]\[n\left( {\overrightarrow P - \overrightarrow a } \right) = m\left( {\overrightarrow b - \overrightarrow P } \right)\]
\[ \Rightarrow \]\[n\overrightarrow P - n\overrightarrow a = m\overrightarrow b - m\overrightarrow P \]
\[ \Rightarrow \]\[\overrightarrow P (n + m) = m\overrightarrow b + n\overrightarrow a \]
\[ \Rightarrow \]\[\overrightarrow P = \dfrac{{m\overrightarrow b + n\overrightarrow a }}{{n + m}}\]
Note: 1) Position vector can be written as the sum of 2 vectors
E.g.\[\overrightarrow {AB} = \overrightarrow {AP} - \overrightarrow {PB} \]
2) Value of position vector is negative if we opposite the direction
e.g. \[\overrightarrow {AB} = - \overrightarrow {BA} \,\]
Triangle law of vector addition: In a triangle, two directions are taken in order while the third one is in the opposite direction. Therefore the sum of 2 sides taken in order is equal to the third side which is taken in the opposite direction.
Complete step-by-step answer:
Let 2 points A & B and P is the point on the line AB and O is the origin then position vector of OA is $\overrightarrow a $ and OB is $\overrightarrow b $ and m:n is the ratio in which P divides A & B and OP will be \[\overrightarrow P \].
Here \[\dfrac{{AP}}{{PB}} = \dfrac{m}{n} - - - - - - - - - - - (i)\]
\[ \Rightarrow \]\[n.AP = m.PB\]
In vector notation, \[n. \overrightarrow {AP} = m.\overrightarrow {PB} - - - - - - - - - - (II)\]
Using triangle law of vector addition in OPA, we get \[\overrightarrow {OP} = \overrightarrow {OA} + \overrightarrow {AP} \]
\[ \Rightarrow \]\[\overrightarrow {AP} = \overrightarrow {OP} - \overrightarrow {OA} - - - - - - - - - - - (III)\]
And in OPB= \[\overrightarrow {OB} = \overrightarrow {OP} + \overrightarrow {PB} \]
\[ \Rightarrow \]\[\overrightarrow {PB} = \overrightarrow {OB} - \overrightarrow {OP} - - - - - - - - - - - (IV)\]
Put the value of \[\overrightarrow {AP} \] and \[\overrightarrow {PB} \] from \[(III)\]& \[(IV)\] in \[(II)\]
\[ \Rightarrow \]\[n\left( {\overrightarrow {OP} - \overrightarrow {OA} } \right) = m\left( {\overrightarrow {OB} - \overrightarrow {OP} } \right)\]
\[ \Rightarrow \]\[n\left( {\overrightarrow P - \overrightarrow a } \right) = m\left( {\overrightarrow b - \overrightarrow P } \right)\]
\[ \Rightarrow \]\[n\overrightarrow P - n\overrightarrow a = m\overrightarrow b - m\overrightarrow P \]
\[ \Rightarrow \]\[\overrightarrow P (n + m) = m\overrightarrow b + n\overrightarrow a \]
\[ \Rightarrow \]\[\overrightarrow P = \dfrac{{m\overrightarrow b + n\overrightarrow a }}{{n + m}}\]
Note: 1) Position vector can be written as the sum of 2 vectors
E.g.\[\overrightarrow {AB} = \overrightarrow {AP} - \overrightarrow {PB} \]
2) Value of position vector is negative if we opposite the direction
e.g. \[\overrightarrow {AB} = - \overrightarrow {BA} \,\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

