Answer
Verified
441.3k+ views
Hint: Position Vector: Position vector is nothing but a straight line whose one end is fixed to a body and the other end is attached to a morning point which is used to describe the position of that body relative to the body.
Triangle law of vector addition: In a triangle, two directions are taken in order while the third one is in the opposite direction. Therefore the sum of 2 sides taken in order is equal to the third side which is taken in the opposite direction.
Complete step-by-step answer:
Let 2 points A & B and P is the point on the line AB and O is the origin then position vector of OA is $\overrightarrow a $ and OB is $\overrightarrow b $ and m:n is the ratio in which P divides A & B and OP will be \[\overrightarrow P \].
Here \[\dfrac{{AP}}{{PB}} = \dfrac{m}{n} - - - - - - - - - - - (i)\]
\[ \Rightarrow \]\[n.AP = m.PB\]
In vector notation, \[n. \overrightarrow {AP} = m.\overrightarrow {PB} - - - - - - - - - - (II)\]
Using triangle law of vector addition in OPA, we get \[\overrightarrow {OP} = \overrightarrow {OA} + \overrightarrow {AP} \]
\[ \Rightarrow \]\[\overrightarrow {AP} = \overrightarrow {OP} - \overrightarrow {OA} - - - - - - - - - - - (III)\]
And in OPB= \[\overrightarrow {OB} = \overrightarrow {OP} + \overrightarrow {PB} \]
\[ \Rightarrow \]\[\overrightarrow {PB} = \overrightarrow {OB} - \overrightarrow {OP} - - - - - - - - - - - (IV)\]
Put the value of \[\overrightarrow {AP} \] and \[\overrightarrow {PB} \] from \[(III)\]& \[(IV)\] in \[(II)\]
\[ \Rightarrow \]\[n\left( {\overrightarrow {OP} - \overrightarrow {OA} } \right) = m\left( {\overrightarrow {OB} - \overrightarrow {OP} } \right)\]
\[ \Rightarrow \]\[n\left( {\overrightarrow P - \overrightarrow a } \right) = m\left( {\overrightarrow b - \overrightarrow P } \right)\]
\[ \Rightarrow \]\[n\overrightarrow P - n\overrightarrow a = m\overrightarrow b - m\overrightarrow P \]
\[ \Rightarrow \]\[\overrightarrow P (n + m) = m\overrightarrow b + n\overrightarrow a \]
\[ \Rightarrow \]\[\overrightarrow P = \dfrac{{m\overrightarrow b + n\overrightarrow a }}{{n + m}}\]
Note: 1) Position vector can be written as the sum of 2 vectors
E.g.\[\overrightarrow {AB} = \overrightarrow {AP} - \overrightarrow {PB} \]
2) Value of position vector is negative if we opposite the direction
e.g. \[\overrightarrow {AB} = - \overrightarrow {BA} \,\]
Triangle law of vector addition: In a triangle, two directions are taken in order while the third one is in the opposite direction. Therefore the sum of 2 sides taken in order is equal to the third side which is taken in the opposite direction.
Complete step-by-step answer:
Let 2 points A & B and P is the point on the line AB and O is the origin then position vector of OA is $\overrightarrow a $ and OB is $\overrightarrow b $ and m:n is the ratio in which P divides A & B and OP will be \[\overrightarrow P \].
Here \[\dfrac{{AP}}{{PB}} = \dfrac{m}{n} - - - - - - - - - - - (i)\]
\[ \Rightarrow \]\[n.AP = m.PB\]
In vector notation, \[n. \overrightarrow {AP} = m.\overrightarrow {PB} - - - - - - - - - - (II)\]
Using triangle law of vector addition in OPA, we get \[\overrightarrow {OP} = \overrightarrow {OA} + \overrightarrow {AP} \]
\[ \Rightarrow \]\[\overrightarrow {AP} = \overrightarrow {OP} - \overrightarrow {OA} - - - - - - - - - - - (III)\]
And in OPB= \[\overrightarrow {OB} = \overrightarrow {OP} + \overrightarrow {PB} \]
\[ \Rightarrow \]\[\overrightarrow {PB} = \overrightarrow {OB} - \overrightarrow {OP} - - - - - - - - - - - (IV)\]
Put the value of \[\overrightarrow {AP} \] and \[\overrightarrow {PB} \] from \[(III)\]& \[(IV)\] in \[(II)\]
\[ \Rightarrow \]\[n\left( {\overrightarrow {OP} - \overrightarrow {OA} } \right) = m\left( {\overrightarrow {OB} - \overrightarrow {OP} } \right)\]
\[ \Rightarrow \]\[n\left( {\overrightarrow P - \overrightarrow a } \right) = m\left( {\overrightarrow b - \overrightarrow P } \right)\]
\[ \Rightarrow \]\[n\overrightarrow P - n\overrightarrow a = m\overrightarrow b - m\overrightarrow P \]
\[ \Rightarrow \]\[\overrightarrow P (n + m) = m\overrightarrow b + n\overrightarrow a \]
\[ \Rightarrow \]\[\overrightarrow P = \dfrac{{m\overrightarrow b + n\overrightarrow a }}{{n + m}}\]
Note: 1) Position vector can be written as the sum of 2 vectors
E.g.\[\overrightarrow {AB} = \overrightarrow {AP} - \overrightarrow {PB} \]
2) Value of position vector is negative if we opposite the direction
e.g. \[\overrightarrow {AB} = - \overrightarrow {BA} \,\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
The quadratic equation whose one root is 2sqrt3 will class 10 maths JEE_Main
If alpha and beta are the roots of the equation x2 class 10 maths JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers