Answer
Verified
459k+ views
Hint:
We see that the given differential equation is the second order differential equation. It means that we differentiate the equation \[y = A\cos nx + B\sin nx\] two times to obtain the second order differential equations. The differentiation is a method of finding a function that generates the rate of change between one variable and another variable. In this equation \[y = A\cos nx + B\sin nx\], y is the dependent variable and x is the independent variable.
Complete step by step solution:
The equation given in the problem is as follows.
\[y = A\cos nx + B\sin nx\].
We can differentiate the above equation with respect to x by using Chain rule.
$\dfrac{d}{{dx}}\left( y \right) = \dfrac{d}{{dx}}\left( {A\cos nx + B\sin nx} \right)\\
\dfrac{{dy}}{{dx}} = - A\sin nx\left( {\dfrac{d}{{dx}}\left( {nx} \right)} \right) + B\cos nx\left( {\dfrac{d}{{dx}}nx} \right)\\
= - nA\sin nx + Bn\sin nx$
The required differential equation needs the second order of differential equation therefore, we will again differentiate the above equation with respect to x.
$\dfrac{{{d^2}y}}{{d{x^2}}} = - An\cos nx\left( {\dfrac{d}{{dx}}\left( {nx} \right)} \right) + Bn\sin nx\left( {\dfrac{d}{{dx}}nx} \right)\\
= - {n^2}A\cos nx - B{n^2}\sin nx\\
= - {n^2}\left( {A\cos nx + B\sin nx} \right)$
We know that \[y = A\cos nx + B\sin nx\] which can be used in the above equation. So, substitute the value of \[\left( {A\cos nx + B\sin nx} \right)\] with y in the above expression.
$\dfrac{{{d^2}y}}{{d{x^2}}} = - {n^2}\left( y \right)\\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} + {n^2}y = 0$
Hence, the above result proves the required equation is \[\dfrac{{{d^2}y}}{{d{x^2}}} + {n^2}y = 0\]. Thus, it is proved that \[y = A\cos nx + B\sin nx\] is a solution of the differential equation: $\dfrac{{{d^2}y}}{{d{x^2}}} + {n^2}y = 0$.
Additional Information:
A differential equation is like an equation of dependent terms differentiated to the different orders. There are a lot of ways of solving such types of equations.
Note:
Make sure to use proper chain rules while doing the differentiation. You should know the basic formula of the trigonometry such as the differential of \[\sin x\] is \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\] and the differential of \[\cos x\] is \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]. Also don’t get confused with the process of differentiation and the process of the integration.
We see that the given differential equation is the second order differential equation. It means that we differentiate the equation \[y = A\cos nx + B\sin nx\] two times to obtain the second order differential equations. The differentiation is a method of finding a function that generates the rate of change between one variable and another variable. In this equation \[y = A\cos nx + B\sin nx\], y is the dependent variable and x is the independent variable.
Complete step by step solution:
The equation given in the problem is as follows.
\[y = A\cos nx + B\sin nx\].
We can differentiate the above equation with respect to x by using Chain rule.
$\dfrac{d}{{dx}}\left( y \right) = \dfrac{d}{{dx}}\left( {A\cos nx + B\sin nx} \right)\\
\dfrac{{dy}}{{dx}} = - A\sin nx\left( {\dfrac{d}{{dx}}\left( {nx} \right)} \right) + B\cos nx\left( {\dfrac{d}{{dx}}nx} \right)\\
= - nA\sin nx + Bn\sin nx$
The required differential equation needs the second order of differential equation therefore, we will again differentiate the above equation with respect to x.
$\dfrac{{{d^2}y}}{{d{x^2}}} = - An\cos nx\left( {\dfrac{d}{{dx}}\left( {nx} \right)} \right) + Bn\sin nx\left( {\dfrac{d}{{dx}}nx} \right)\\
= - {n^2}A\cos nx - B{n^2}\sin nx\\
= - {n^2}\left( {A\cos nx + B\sin nx} \right)$
We know that \[y = A\cos nx + B\sin nx\] which can be used in the above equation. So, substitute the value of \[\left( {A\cos nx + B\sin nx} \right)\] with y in the above expression.
$\dfrac{{{d^2}y}}{{d{x^2}}} = - {n^2}\left( y \right)\\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} + {n^2}y = 0$
Hence, the above result proves the required equation is \[\dfrac{{{d^2}y}}{{d{x^2}}} + {n^2}y = 0\]. Thus, it is proved that \[y = A\cos nx + B\sin nx\] is a solution of the differential equation: $\dfrac{{{d^2}y}}{{d{x^2}}} + {n^2}y = 0$.
Additional Information:
A differential equation is like an equation of dependent terms differentiated to the different orders. There are a lot of ways of solving such types of equations.
Note:
Make sure to use proper chain rules while doing the differentiation. You should know the basic formula of the trigonometry such as the differential of \[\sin x\] is \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\] and the differential of \[\cos x\] is \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]. Also don’t get confused with the process of differentiation and the process of the integration.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE