Answer
Verified
447.9k+ views
Hint:When we equal a physical quantity with its dimensional formula, the equations obtained are called dimensional equations. Here, we will compare dimensional equations in the SI unit and CGS unit of each given quantity and see whether both vary by ${10^3}$times or not.
Complete step by step answer:
First, we will consider our first option which is Boltzmann constant.
The dimensional formula of Boltzmann constant is given by $M{L^2}{T^{ - 2}}{K^{ - 1}}$
We know that in CGS units, only mass and length parameters vary and time and temperature remains the same. Unit of mass in the SI unit is kilogram and in CGS, it is gram. And unit of length in SI unit is metre and in CGS unit, it is centimeter.
Thus if we take the formula of Boltzmann constant in SI unit as ${M_1}{L_1}^2{T_1}^{ - 2}{K_1}^{ - 1}$ and in CGS unit as ${M_2}{L_2}^2{T_1}^{ - 2}{K_1}^{ - 1}$, then taking the ratio of both, we get
\[
\dfrac{{{M_1}{L_1}^2{T_1}^{ - 2}{K_1}^{ - 1}}}{{{M_2}{L_2}^2{T_1}^{ - 2}{K_1}^{ - 1}}} \\
\Rightarrow \dfrac{{{M_1}{L_1}^2}}{{{M_2}{L_2}^2}} \\
\Rightarrow \dfrac{{1000{M_2} \times {{\left( {100{L_2}} \right)}^2}}}{{{M_2}{L_2}^2}} \\
\Rightarrow {10^7} \ne {10^3} \\
\]
Thus, Boltzmann constant is not our answer.
Now, let us do the same procedure for option B which is Gravitational constant
The dimensional formula of Gravitational constant is given by ${M^{ - 1}}{L^3}{T^{ - 2}}$
If we take the formula of Gravitational constant in SI unit as ${M_1}^{ - 1}{L_1}^3{T_1}^{ - 2}$ and in CGS unit as ${M_2}^{ - 1}{L_2}^3{T_1}^{ - 2}$, then taking the ratio of both, we get
\[
\dfrac{{{M_1}^{ - 1}{L_1}^3{T_1}^{ - 2}}}{{{M_2}^{ - 1}{L_2}^3{T_1}^{ - 2}}} \\
\Rightarrow \dfrac{{{M_2}{L_1}^3}}{{{M_1}{L_2}^3}} \\
\Rightarrow\dfrac{{{M_2} \times {{\left( {100{L_2}} \right)}^3}}}{{1000{M_2} \times {L_2}^3}} \\
\therefore {10^3} \\
\]
Thus, the SI unit and CGS unit of the Gravitational constant quantity vary by ${10^3}$ times.
Hence, option B is the right answer.
Note: We have got our answer but let us consider remaining options, too. Considering option C, The dimensional formula of Planck's constant is given by ${M^1}{L^1}{T^{ - 1}}$.
If we take the formula of Planck's constant in SI unit as ${M_1}^1{L_1}^1{T_1}^{ - 1}$ and in CGS unit as ${M_2}^1{L_2}^1{T_1}^{ - 1}$, then taking the ratio of both, we get
$
\dfrac{{{M_1}^1{L_1}^1{T_1}^{ - 1}}}{{{M_2}^1{L_2}^1{T_1}^{ - 1}}} \\
\Rightarrow \dfrac{{{M_1}^1{L_1}^1}}{{{M_2}^1{L_2}^1}} \\
\Rightarrow \dfrac{{1000{M_2} \times 100{L_2}}}{{{M_2}{L_2}}} \\
\Rightarrow{10^5} \ne {10^3} \\ $
Similarly, for option D, The dimensional formula of Angular momentum is given by ${M^1}{L^2}{T^{ - 1}}$. If we take the formula of Angular momentum in SI unit as ${M_1}^1{L_1}^2{T_1}^{ - 1}$ and in CGS unit as ${M_2}^1{L_2}^2{T_1}^{ - 1}$, then taking the ratio of both, we get
$
\dfrac{{{M_1}^1{L_1}^2{T_1}^{ - 1}}}{{{M_2}^1{L_2}^2{T_1}^{ - 1}}} \\
\Rightarrow \dfrac{{{M_1}^1{L_1}^2}}{{{M_2}^1{L_2}^2}} \\
\Rightarrow \dfrac{{1000{M_2} \times {{\left( {100{L_2}} \right)}^2}}}{{{M_2}{L_2}^2}} \\
\Rightarrow {10^7} \ne {10^3} \\ $
Complete step by step answer:
First, we will consider our first option which is Boltzmann constant.
The dimensional formula of Boltzmann constant is given by $M{L^2}{T^{ - 2}}{K^{ - 1}}$
We know that in CGS units, only mass and length parameters vary and time and temperature remains the same. Unit of mass in the SI unit is kilogram and in CGS, it is gram. And unit of length in SI unit is metre and in CGS unit, it is centimeter.
Thus if we take the formula of Boltzmann constant in SI unit as ${M_1}{L_1}^2{T_1}^{ - 2}{K_1}^{ - 1}$ and in CGS unit as ${M_2}{L_2}^2{T_1}^{ - 2}{K_1}^{ - 1}$, then taking the ratio of both, we get
\[
\dfrac{{{M_1}{L_1}^2{T_1}^{ - 2}{K_1}^{ - 1}}}{{{M_2}{L_2}^2{T_1}^{ - 2}{K_1}^{ - 1}}} \\
\Rightarrow \dfrac{{{M_1}{L_1}^2}}{{{M_2}{L_2}^2}} \\
\Rightarrow \dfrac{{1000{M_2} \times {{\left( {100{L_2}} \right)}^2}}}{{{M_2}{L_2}^2}} \\
\Rightarrow {10^7} \ne {10^3} \\
\]
Thus, Boltzmann constant is not our answer.
Now, let us do the same procedure for option B which is Gravitational constant
The dimensional formula of Gravitational constant is given by ${M^{ - 1}}{L^3}{T^{ - 2}}$
If we take the formula of Gravitational constant in SI unit as ${M_1}^{ - 1}{L_1}^3{T_1}^{ - 2}$ and in CGS unit as ${M_2}^{ - 1}{L_2}^3{T_1}^{ - 2}$, then taking the ratio of both, we get
\[
\dfrac{{{M_1}^{ - 1}{L_1}^3{T_1}^{ - 2}}}{{{M_2}^{ - 1}{L_2}^3{T_1}^{ - 2}}} \\
\Rightarrow \dfrac{{{M_2}{L_1}^3}}{{{M_1}{L_2}^3}} \\
\Rightarrow\dfrac{{{M_2} \times {{\left( {100{L_2}} \right)}^3}}}{{1000{M_2} \times {L_2}^3}} \\
\therefore {10^3} \\
\]
Thus, the SI unit and CGS unit of the Gravitational constant quantity vary by ${10^3}$ times.
Hence, option B is the right answer.
Note: We have got our answer but let us consider remaining options, too. Considering option C, The dimensional formula of Planck's constant is given by ${M^1}{L^1}{T^{ - 1}}$.
If we take the formula of Planck's constant in SI unit as ${M_1}^1{L_1}^1{T_1}^{ - 1}$ and in CGS unit as ${M_2}^1{L_2}^1{T_1}^{ - 1}$, then taking the ratio of both, we get
$
\dfrac{{{M_1}^1{L_1}^1{T_1}^{ - 1}}}{{{M_2}^1{L_2}^1{T_1}^{ - 1}}} \\
\Rightarrow \dfrac{{{M_1}^1{L_1}^1}}{{{M_2}^1{L_2}^1}} \\
\Rightarrow \dfrac{{1000{M_2} \times 100{L_2}}}{{{M_2}{L_2}}} \\
\Rightarrow{10^5} \ne {10^3} \\ $
Similarly, for option D, The dimensional formula of Angular momentum is given by ${M^1}{L^2}{T^{ - 1}}$. If we take the formula of Angular momentum in SI unit as ${M_1}^1{L_1}^2{T_1}^{ - 1}$ and in CGS unit as ${M_2}^1{L_2}^2{T_1}^{ - 1}$, then taking the ratio of both, we get
$
\dfrac{{{M_1}^1{L_1}^2{T_1}^{ - 1}}}{{{M_2}^1{L_2}^2{T_1}^{ - 1}}} \\
\Rightarrow \dfrac{{{M_1}^1{L_1}^2}}{{{M_2}^1{L_2}^2}} \\
\Rightarrow \dfrac{{1000{M_2} \times {{\left( {100{L_2}} \right)}^2}}}{{{M_2}{L_2}^2}} \\
\Rightarrow {10^7} \ne {10^3} \\ $
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE