Answer
Verified
430.2k+ views
Hint: Now the given expression is in the form of $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$. Now we know that the formula for $\sin \left( A-B \right)$ is nothing but cosAsinB – sinAcosB. Hence we can write the equation in the form of $\sin \left( A-B \right)$ and hence we will have a simplified expression.
Complete step-by-step solution:
Now let us first understand the trigonometric identities for cos and sin.
sin and cos are trigonometric ratios. sin denotes $\dfrac{\text{opposite side}}{\text{hypotenuse }}$ while cos denotes $\dfrac{\text{adjacent side}}{\text{hypotenuse}}$ .
Now all other trigonometric identities can be expressed in the form of sin and cos. Now consider let us understand the identities related to these identities.
If we apply Pythagora's theorem on the ratios we get the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ .
Now let us learn the sum and addition of angles formula.
$\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$ and $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ .
Similarly for cos we have,
$\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ and $\cos \left( A-B \right)=\cos A\cos B+ \sin A\sin B$
Now Double angle formula for sin and cos are,
$\sin 2A=2\sin A\cos A$ and $\cos \left( 2A \right)={{\cos }^{2}}A-{{\sin }^{2}}A$ .
Now let us check the given expression $\cos 45\sin 65-\cos 65\sin 45$ .
The given expression is in the form of $\sin A\cos B-\cos A\sin B$ where A = 65 and B = 45.
We know that $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
Hence using this we get,
$\Rightarrow \sin \left( 65-45 \right)=\cos 45\sin 65-\cos 65\sin 45$
Now simplifying the above equation we get,
$\sin \left( 20 \right)=\cos 45\sin 65-\cos 65\sin 45$
Hence the given equation can be written as $\sin \left( 20 \right)$.
Note: Now note that the double angle formula can be easily obtained by substituting B = A in the addition of angles formula. Similarly by replacing A by $\dfrac{A}{2}$ in the double angle formula we will get the half angle formula. We can also always convert sin and cos with identity $\sin A=\cos \left( 90-A \right)$ or ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
Complete step-by-step solution:
Now let us first understand the trigonometric identities for cos and sin.
sin and cos are trigonometric ratios. sin denotes $\dfrac{\text{opposite side}}{\text{hypotenuse }}$ while cos denotes $\dfrac{\text{adjacent side}}{\text{hypotenuse}}$ .
Now all other trigonometric identities can be expressed in the form of sin and cos. Now consider let us understand the identities related to these identities.
If we apply Pythagora's theorem on the ratios we get the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ .
Now let us learn the sum and addition of angles formula.
$\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$ and $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ .
Similarly for cos we have,
$\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ and $\cos \left( A-B \right)=\cos A\cos B+ \sin A\sin B$
Now Double angle formula for sin and cos are,
$\sin 2A=2\sin A\cos A$ and $\cos \left( 2A \right)={{\cos }^{2}}A-{{\sin }^{2}}A$ .
Now let us check the given expression $\cos 45\sin 65-\cos 65\sin 45$ .
The given expression is in the form of $\sin A\cos B-\cos A\sin B$ where A = 65 and B = 45.
We know that $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
Hence using this we get,
$\Rightarrow \sin \left( 65-45 \right)=\cos 45\sin 65-\cos 65\sin 45$
Now simplifying the above equation we get,
$\sin \left( 20 \right)=\cos 45\sin 65-\cos 65\sin 45$
Hence the given equation can be written as $\sin \left( 20 \right)$.
Note: Now note that the double angle formula can be easily obtained by substituting B = A in the addition of angles formula. Similarly by replacing A by $\dfrac{A}{2}$ in the double angle formula we will get the half angle formula. We can also always convert sin and cos with identity $\sin A=\cos \left( 90-A \right)$ or ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers