How do you simplify \[\dfrac{{7 + 2i}}{{4 + 5i}}?\]
Answer
Verified
442.8k+ views
Hint: We will multiply numerator and denominator by the complement complex number of \[4 + 5i\] and then simplify the above iteration. Finally we get the required answer.
Complete Step by Step Solution:
The given expression is \[\dfrac{{7 + 2i}}{{4 + 5i}}.\]
Now, we will multiply numerator and denominator by \[(4 - 5i)\].
By doing it, we get:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{(4 + 5i) \times (4 - 5i)}}\].
Now, by using the formula, we can write the denominator as following way:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{{{(4)}^2} - {{(5i)}^2}}}\].
Now, by doing further simplification, we get:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 - (25 \times - 1)}},\;as\;{i^2} = - 1.\]
By doing further simplification:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 + 25}}\]
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{41}}....................(1)\]
Now, calculate the numerator part only, we get:
\[ \Rightarrow (7 + 2i) \times (4 - 5i)\]
\[ \Rightarrow (7 + 2i) \times 4 - (7 + 2i) \times 5i\].
Using multiplication, we get:
\[ \Rightarrow (28 + 8i) - (35i + 10{i^2})\].
Now, using algebraic calculations and putting the value of \[{i^2} = - 1\], we get:
\[ \Rightarrow (28 + 8i) - (35i - 10)\]
\[ \Rightarrow 28 + 8i - 35i - 10\].
Now, by doing further simplification:
\[ \Rightarrow (18 - 27i)\].
Now, putting the value of numerator of \[(18 - 27i)\] in the iteration \[(1)\], we get:
\[ \Rightarrow \dfrac{{(18 - 27i)}}{{41}}\].
Therefore, the required answer is \[\dfrac{{(18 - 27i)}}{{41}}\].
Note: Points to remember:
A complex number is expressed as following:
\[X + i.Y\], where \[X\] and \[Y\] are real numbers but the imaginary part of the number is \[i\].
A complex number lies on the imaginary axis in \[X - Y\] plane.
Complete Step by Step Solution:
The given expression is \[\dfrac{{7 + 2i}}{{4 + 5i}}.\]
Now, we will multiply numerator and denominator by \[(4 - 5i)\].
By doing it, we get:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{(4 + 5i) \times (4 - 5i)}}\].
Now, by using the formula, we can write the denominator as following way:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{{{(4)}^2} - {{(5i)}^2}}}\].
Now, by doing further simplification, we get:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 - (25 \times - 1)}},\;as\;{i^2} = - 1.\]
By doing further simplification:
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{16 + 25}}\]
\[ \Rightarrow \dfrac{{(7 + 2i) \times (4 - 5i)}}{{41}}....................(1)\]
Now, calculate the numerator part only, we get:
\[ \Rightarrow (7 + 2i) \times (4 - 5i)\]
\[ \Rightarrow (7 + 2i) \times 4 - (7 + 2i) \times 5i\].
Using multiplication, we get:
\[ \Rightarrow (28 + 8i) - (35i + 10{i^2})\].
Now, using algebraic calculations and putting the value of \[{i^2} = - 1\], we get:
\[ \Rightarrow (28 + 8i) - (35i - 10)\]
\[ \Rightarrow 28 + 8i - 35i - 10\].
Now, by doing further simplification:
\[ \Rightarrow (18 - 27i)\].
Now, putting the value of numerator of \[(18 - 27i)\] in the iteration \[(1)\], we get:
\[ \Rightarrow \dfrac{{(18 - 27i)}}{{41}}\].
Therefore, the required answer is \[\dfrac{{(18 - 27i)}}{{41}}\].
Note: Points to remember:
A complex number is expressed as following:
\[X + i.Y\], where \[X\] and \[Y\] are real numbers but the imaginary part of the number is \[i\].
A complex number lies on the imaginary axis in \[X - Y\] plane.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE