How do you simplify \[\left( 7-6i \right)\left( 2-3i \right)\]?
Answer
Verified
442.2k+ views
Hint: We first explain the meaning of the process ‘FOIL’. We multiply the terms according to their positions. There are four multiplications to be done. We complete all four multiplications according to the previously mentioned process.
Complete step by step solution:
We have been given multiplication of two linear equations. We have to do the breakings of the polynomials in order of FOIL. The word FOIL stands for First-Outside-Inside-Last. It is a technique to distribute the multiplication of polynomials.
There are two terms in each polynomial.
We start by multiplying the first terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are 7 and 2.
The multiplication gives a result of $7\times 2=14$.
We now multiply the outside terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are 7 and $-3i$.
The multiplication gives a result of $7\times \left( -3i \right)=-21i$.
Then we multiply the inside terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are $-6i$ and 2.
The multiplication gives the result of $\left( -6i \right)\times 2=-12i$.
We end by multiplying the last terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are $-6i$ and $-3i$.
The multiplication gives the result of $\left( -6i \right)\times \left( -3i \right)=18{{i}^{2}}$.
Now we add all the terms to get $\left( 7-6i \right)\left( 2-3i \right)=14-21i-12i+18{{i}^{2}}$.
We have the relations for imaginary $i$ where ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$. We place the values in the multiplication.
The final solution is $14-21i-12i+18{{i}^{2}}=14-33i-18=-33i-4$
Therefore, multiplied value of \[\left( 7-6i \right)\left( 2-3i \right)\] is $-33i-4$.
Note: We can find that in the multiplication the real numbers are created from the multiplication of two real or two imaginary numbers and the imaginary numbers are created from the multiplication of mixed numbers.
Complete step by step solution:
We have been given multiplication of two linear equations. We have to do the breakings of the polynomials in order of FOIL. The word FOIL stands for First-Outside-Inside-Last. It is a technique to distribute the multiplication of polynomials.
There are two terms in each polynomial.
We start by multiplying the first terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are 7 and 2.
The multiplication gives a result of $7\times 2=14$.
We now multiply the outside terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are 7 and $-3i$.
The multiplication gives a result of $7\times \left( -3i \right)=-21i$.
Then we multiply the inside terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are $-6i$ and 2.
The multiplication gives the result of $\left( -6i \right)\times 2=-12i$.
We end by multiplying the last terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are $-6i$ and $-3i$.
The multiplication gives the result of $\left( -6i \right)\times \left( -3i \right)=18{{i}^{2}}$.
Now we add all the terms to get $\left( 7-6i \right)\left( 2-3i \right)=14-21i-12i+18{{i}^{2}}$.
We have the relations for imaginary $i$ where ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$. We place the values in the multiplication.
The final solution is $14-21i-12i+18{{i}^{2}}=14-33i-18=-33i-4$
Therefore, multiplied value of \[\left( 7-6i \right)\left( 2-3i \right)\] is $-33i-4$.
Note: We can find that in the multiplication the real numbers are created from the multiplication of two real or two imaginary numbers and the imaginary numbers are created from the multiplication of mixed numbers.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE