Answer
Verified
429.3k+ views
Hint:
Here, we will use suitable exponent rules to simplify the given exponential expression. Then we will use the definition of scientific notation to rewrite the simplified value in the form of scientific notation. Scientific notation is a way of expressing a number that is too large or too small in a simpler form or in the decimal form.
Formula Used:
We will use the following formulas:
1) Power of a Product rule: \[{\left( {ab} \right)^m} = {a^m} \times {b^m}\]
2) Power rule for Exponents: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
3) Negative Exponent Rule: \[{\left( a \right)^{ - n}} = {\left( {\dfrac{1}{a}} \right)^n}\]
4) Product rule of exponents: \[{a^m} \times {a^n} = {a^{m + n}}\]
5) Zero Exponent: \[{a^0} = 1\]
Complete step by step solution:
We are given an exponential expression\[{\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}}\].
Now, by using the Power of Product rule \[{\left( {ab} \right)^m} = {a^m} \times {b^m}\], we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = {7.87^{ - 6}} \times {\left( {{{10}^{ - 1}}} \right)^{ - 6}}\]
Using the Power rule for exponents \[{\left( {{a^m}} \right)^n} = {a^{mn}}\], we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = {7.87^{ - 6}} \times {10^{ - 1 \times - 6}}\]
We know that the product of two negative integers is a positive integer. So, we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = {7.87^{ - 6}} \times {10^6}\]
Now, by using the Negative Exponent rule \[{\left( a \right)^{ - n}} = {\left( {\dfrac{1}{a}} \right)^n}\], we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = \left( {\dfrac{1}{{{{7.87}^6}}}} \right) \times {10^6}\]
Applying the exponents, we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = \left( {\dfrac{1}{{237601.0711}}} \right) \times {10^6}\]
Simplifying the expression, we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = 4.2087 \times {10^{ - 6}} \times {10^6}\]
Using the Product rule of exponents \[{a^m} \times {a^n} = {a^{m + n}}\], we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = 4.2087 \times {10^{ - 6 + 6}}\]
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = 4.2087 \times {10^0}\]
Now, by using the Zero exponent rule \[{a^0} = 1\], we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = 4.2087 \times 1\]
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = 4.2087\]
A number can be expressed in Scientific notation which is in the form \[N = a \times {10^n}\] where \[1 \le a < 10\] and \[n\] is an integer
The above equation is in the form of scientific notation where \[a\] is greater than \[1\] and less than \[10\].
Therefore, the value of the exponential expression \[{\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}}\] is \[4.2087\]
Note:
We know that an exponential expression is defined as an expression with the base and exponents. The number of digits that is moved from the decimal point(either left or right) is given by the power of \[10\] that is equal to \[{10^n}\]. If the decimal point is moved to the left, then the exponent \[n\] is positive and if the decimal point is moved to the right, then the exponent \[n\] is negative.
Here, we will use suitable exponent rules to simplify the given exponential expression. Then we will use the definition of scientific notation to rewrite the simplified value in the form of scientific notation. Scientific notation is a way of expressing a number that is too large or too small in a simpler form or in the decimal form.
Formula Used:
We will use the following formulas:
1) Power of a Product rule: \[{\left( {ab} \right)^m} = {a^m} \times {b^m}\]
2) Power rule for Exponents: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
3) Negative Exponent Rule: \[{\left( a \right)^{ - n}} = {\left( {\dfrac{1}{a}} \right)^n}\]
4) Product rule of exponents: \[{a^m} \times {a^n} = {a^{m + n}}\]
5) Zero Exponent: \[{a^0} = 1\]
Complete step by step solution:
We are given an exponential expression\[{\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}}\].
Now, by using the Power of Product rule \[{\left( {ab} \right)^m} = {a^m} \times {b^m}\], we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = {7.87^{ - 6}} \times {\left( {{{10}^{ - 1}}} \right)^{ - 6}}\]
Using the Power rule for exponents \[{\left( {{a^m}} \right)^n} = {a^{mn}}\], we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = {7.87^{ - 6}} \times {10^{ - 1 \times - 6}}\]
We know that the product of two negative integers is a positive integer. So, we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = {7.87^{ - 6}} \times {10^6}\]
Now, by using the Negative Exponent rule \[{\left( a \right)^{ - n}} = {\left( {\dfrac{1}{a}} \right)^n}\], we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = \left( {\dfrac{1}{{{{7.87}^6}}}} \right) \times {10^6}\]
Applying the exponents, we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = \left( {\dfrac{1}{{237601.0711}}} \right) \times {10^6}\]
Simplifying the expression, we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = 4.2087 \times {10^{ - 6}} \times {10^6}\]
Using the Product rule of exponents \[{a^m} \times {a^n} = {a^{m + n}}\], we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = 4.2087 \times {10^{ - 6 + 6}}\]
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = 4.2087 \times {10^0}\]
Now, by using the Zero exponent rule \[{a^0} = 1\], we get
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = 4.2087 \times 1\]
\[ \Rightarrow {\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}} = 4.2087\]
A number can be expressed in Scientific notation which is in the form \[N = a \times {10^n}\] where \[1 \le a < 10\] and \[n\] is an integer
The above equation is in the form of scientific notation where \[a\] is greater than \[1\] and less than \[10\].
Therefore, the value of the exponential expression \[{\left( {7.87 \times {{10}^{ - 1}}} \right)^{ - 6}}\] is \[4.2087\]
Note:
We know that an exponential expression is defined as an expression with the base and exponents. The number of digits that is moved from the decimal point(either left or right) is given by the power of \[10\] that is equal to \[{10^n}\]. If the decimal point is moved to the left, then the exponent \[n\] is positive and if the decimal point is moved to the right, then the exponent \[n\] is negative.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers