Answer
Verified
430.2k+ views
Hint:
Here, we have to simplify the expression. We will simplify the surds to the whole integers by using the BODMAS rule and Rules of surds. Simplification is the process of sorting out all the arithmetic operations and solving the expression to find an integer.
Formula Used:
Rule of surds: \[a\sqrt c \pm b\sqrt c = \left( {a \pm b} \right)\sqrt c \]
Complete Step by step Solution:
We are given with a mathematical expression \[\sqrt {72} + \sqrt {800} - \sqrt {18} \]
We will find the factors of the given numbers to simplify the expression in the form of surds.
First, we will do the factorization of 72.
\[\begin{array}{l}{\rm{2}}\left| \!{\underline {\,
{{\rm{72}}} \,}} \right. \\{\rm{2}}\left| \!{\underline {\,
{{\rm{36}}} \,}} \right. \\{\rm{2}}\left| \!{\underline {\,
{{\rm{18}}} \,}} \right. \\{\rm{3}}\left| \!{\underline {\,
{\rm{9}} \,}} \right. \\{\rm{3}}\left| \!{\underline {\,
{\rm{3}} \,}} \right. \end{array}\]
We can write 72 as \[72 = 2 \times 2 \times 2 \times 3 \times 3\]
So, that the number can be written as \[\sqrt {72} = \sqrt {2 \times 2 \times 2 \times 3 \times 3} \]
Now, we will do the factorization of 800.
\[\begin{array}{l}{\rm{2}}\left| \!{\underline {\,
{{\rm{800}}} \,}} \right. \\{\rm{2}}\left| \!{\underline {\,
{{\rm{400}}} \,}} \right. \\{\rm{2}}\left| \!{\underline {\,
{{\rm{200}}} \,}} \right. \\{\rm{2}}\left| \!{\underline {\,
{{\rm{100}}} \,}} \right. \\{\rm{2}}\left| \!{\underline {\,
{{\rm{50}}} \,}} \right. \\{\rm{5}}\left| \!{\underline {\,
{{\rm{25}}} \,}} \right. \\{\rm{5}}\left| \!{\underline {\,
{\rm{5}} \,}} \right. \end{array}\]
We can write 800 as \[800 = 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5\]
So, that the number can be written as \[\sqrt {800} = \sqrt {2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5} \]
Now, we will do the factorization of 18.
\[\begin{array}{l}{\rm{2}}\left| \!{\underline {\,
{{\rm{18}}} \,}} \right. \\{\rm{3}}\left| \!{\underline {\,
{\rm{9}} \,}} \right. \\{\rm{3}}\left| \!{\underline {\,
{\rm{3}} \,}} \right. \end{array}\]
We can write 800 as
So, that the number can be written as \[\sqrt {18} = \sqrt {2 \times 3 \times 3} \]
Now, simplifying the expression, we get
So, the factors can be paired and by taking square root on both the sides, we get
\[\sqrt {72} = 6\sqrt 2 \]
\[\sqrt {800} = 20\sqrt 2 \]
\[\sqrt {18} = 3\sqrt 2 \]
Now substituting the values in the given expression, we get
\[\sqrt {72} + \sqrt {800} - \sqrt {18} = 6\sqrt 2 + 20\sqrt 2 - 3\sqrt 2 \]
Now, by using the BODMAS Rule and by using the rules of surds, we get
\[ \Rightarrow \sqrt {72} + \sqrt {800} - \sqrt {18} = 26\sqrt 2 - 3\sqrt 2 \]
Now, subtracting the surds using the rules of surds, we get
\[ \Rightarrow \sqrt {72} + \sqrt {800} - \sqrt {18} = 23\sqrt 2 \]
Therefore, \[\sqrt {72} + \sqrt {800} - \sqrt {18} = 23\sqrt 2 \]
Additional Information:
BODMAS rule states that the first operation has to be done which is in the brackets, next the operation applies on the indices or order, then it moves on to the division and multiplication and then using addition and subtraction we will simplify the expression. If addition or subtraction and division or multiplication are in the same calculations, then it has to be done from left to right.
Note:
We know that surds are the numbers which are not the perfect squares. Surds cannot be expressed as a rational number or whole number. A surd has only one term called simple surds. An expression that has the same surds can be added, subtracted, multiplied or divided. Thus the surds are compound surds. Surds that are completely irrational are called pure surds.
Here, we have to simplify the expression. We will simplify the surds to the whole integers by using the BODMAS rule and Rules of surds. Simplification is the process of sorting out all the arithmetic operations and solving the expression to find an integer.
Formula Used:
Rule of surds: \[a\sqrt c \pm b\sqrt c = \left( {a \pm b} \right)\sqrt c \]
Complete Step by step Solution:
We are given with a mathematical expression \[\sqrt {72} + \sqrt {800} - \sqrt {18} \]
We will find the factors of the given numbers to simplify the expression in the form of surds.
First, we will do the factorization of 72.
\[\begin{array}{l}{\rm{2}}\left| \!{\underline {\,
{{\rm{72}}} \,}} \right. \\{\rm{2}}\left| \!{\underline {\,
{{\rm{36}}} \,}} \right. \\{\rm{2}}\left| \!{\underline {\,
{{\rm{18}}} \,}} \right. \\{\rm{3}}\left| \!{\underline {\,
{\rm{9}} \,}} \right. \\{\rm{3}}\left| \!{\underline {\,
{\rm{3}} \,}} \right. \end{array}\]
We can write 72 as \[72 = 2 \times 2 \times 2 \times 3 \times 3\]
So, that the number can be written as \[\sqrt {72} = \sqrt {2 \times 2 \times 2 \times 3 \times 3} \]
Now, we will do the factorization of 800.
\[\begin{array}{l}{\rm{2}}\left| \!{\underline {\,
{{\rm{800}}} \,}} \right. \\{\rm{2}}\left| \!{\underline {\,
{{\rm{400}}} \,}} \right. \\{\rm{2}}\left| \!{\underline {\,
{{\rm{200}}} \,}} \right. \\{\rm{2}}\left| \!{\underline {\,
{{\rm{100}}} \,}} \right. \\{\rm{2}}\left| \!{\underline {\,
{{\rm{50}}} \,}} \right. \\{\rm{5}}\left| \!{\underline {\,
{{\rm{25}}} \,}} \right. \\{\rm{5}}\left| \!{\underline {\,
{\rm{5}} \,}} \right. \end{array}\]
We can write 800 as \[800 = 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5\]
So, that the number can be written as \[\sqrt {800} = \sqrt {2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5} \]
Now, we will do the factorization of 18.
\[\begin{array}{l}{\rm{2}}\left| \!{\underline {\,
{{\rm{18}}} \,}} \right. \\{\rm{3}}\left| \!{\underline {\,
{\rm{9}} \,}} \right. \\{\rm{3}}\left| \!{\underline {\,
{\rm{3}} \,}} \right. \end{array}\]
We can write 800 as
So, that the number can be written as \[\sqrt {18} = \sqrt {2 \times 3 \times 3} \]
Now, simplifying the expression, we get
So, the factors can be paired and by taking square root on both the sides, we get
\[\sqrt {72} = 6\sqrt 2 \]
\[\sqrt {800} = 20\sqrt 2 \]
\[\sqrt {18} = 3\sqrt 2 \]
Now substituting the values in the given expression, we get
\[\sqrt {72} + \sqrt {800} - \sqrt {18} = 6\sqrt 2 + 20\sqrt 2 - 3\sqrt 2 \]
Now, by using the BODMAS Rule and by using the rules of surds, we get
\[ \Rightarrow \sqrt {72} + \sqrt {800} - \sqrt {18} = 26\sqrt 2 - 3\sqrt 2 \]
Now, subtracting the surds using the rules of surds, we get
\[ \Rightarrow \sqrt {72} + \sqrt {800} - \sqrt {18} = 23\sqrt 2 \]
Therefore, \[\sqrt {72} + \sqrt {800} - \sqrt {18} = 23\sqrt 2 \]
Additional Information:
BODMAS rule states that the first operation has to be done which is in the brackets, next the operation applies on the indices or order, then it moves on to the division and multiplication and then using addition and subtraction we will simplify the expression. If addition or subtraction and division or multiplication are in the same calculations, then it has to be done from left to right.
Note:
We know that surds are the numbers which are not the perfect squares. Surds cannot be expressed as a rational number or whole number. A surd has only one term called simple surds. An expression that has the same surds can be added, subtracted, multiplied or divided. Thus the surds are compound surds. Surds that are completely irrational are called pure surds.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE