
Simplify this expression ${{a}^{m}}\times {{a}^{n}}$.
(a) ${{a}^{m}}+{{a}^{n}}$
(b) ${{a}^{m-n}}$
(c) ${{a}^{m+n}}$
(d) ${{a}^{mn}}$
Answer
548.1k+ views
Hint: Before going to solve this problem, we will discuss the concept of Base and Exponent. When we want to calculate the value ${{2}^{3}}$. Here $2$ is called as base and $3$ is called as exponent and the value of ${{2}^{3}}$ is calculated as ${{2}^{3}}=2\times 2\times 2=8$. From this we can say that the value of ${{a}^{m}}$ where $a$ is the base and $m$ is the exponent is obtained by multiplying the base $a$ with itself $m$(exponent) time. We have some basic exponent rules involving binary operations of bases and exponents. These are the following rules, (${{x}^{a}}{{x}^{b}}={{x}^{a+b}}$; $\dfrac{{{x}^{a}}}{{{x}^{b}}}={{x}^{a-b}}$; ${{\left( {{x}^{a}} \right)}^{b}}={{x}^{ab}}$; ${{\left( xy \right)}^{a}}={{x}^{a}}{{y}^{a}}$.
Complete step-by-step answer:
Let us assume that $a=2$, $m=1$, $n=2$ then the value of ${{a}^{m}}\times {{a}^{n}}$is
$\begin{align}
& {{a}^{m}}\times {{a}^{n}}={{2}^{1}}\times {{2}^{2}} \\
& \Rightarrow {{a}^{m}}\times {{a}^{n}}=2\times 4 \\
& \therefore {{a}^{m}}\times {{a}^{n}}=8 \\
\end{align}$
Now the value of ${{a}^{m}}+{{a}^{n}}$ is
$\begin{align}
& {{a}^{m}}+{{a}^{n}}={{2}^{1}}+{{2}^{2}} \\
& \Rightarrow {{a}^{m}}+{{a}^{n}}=2+4 \\
& \therefore {{a}^{m}}+{{a}^{n}}=6......\left( \text{i} \right) \\
\end{align}$
The value of ${{a}^{m-n}}$ is
$\begin{align}
& {{a}^{m-n}}={{2}^{1-2}} \\
& \Rightarrow {{a}^{m-n}}={{2}^{-1}} \\
& \therefore {{a}^{m-n}}=\dfrac{1}{2}.....\left( \text{ii} \right) \\
\end{align}$
The value of ${{a}^{m+n}}$ is
$\begin{align}
& {{a}^{m+n}}={{2}^{1+2}} \\
& \Rightarrow {{a}^{m+n}}={{2}^{3}} \\
& \therefore {{a}^{m+n}}=8.....\left( \text{iii} \right) \\
\end{align}$
The value of ${{a}^{mn}}$ is
$\begin{align}
& {{a}^{mn}}={{2}^{1\left( 2 \right)}} \\
& \Rightarrow {{a}^{mn}}={{2}^{2}} \\
& \therefore {{a}^{mn}}=4......\left( \text{iv} \right) \\
\end{align}$
From equations $\left( \text{i} \right),\left( \text{ii} \right),\left( \text{iii} \right),\left( \text{iv} \right)$ , we can say that the value of ${{a}^{m}}\times {{a}^{n}}$ is equals to the value of ${{a}^{m+n}}$, hence we can say that
${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$
Note: For this kind of problem it’s the better way to assume the values and check for the option. Some of the similar problem that can be solved by this method are
$\begin{align}
& \dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}} \\
& {{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}
\end{align}$
Complete step-by-step answer:
Let us assume that $a=2$, $m=1$, $n=2$ then the value of ${{a}^{m}}\times {{a}^{n}}$is
$\begin{align}
& {{a}^{m}}\times {{a}^{n}}={{2}^{1}}\times {{2}^{2}} \\
& \Rightarrow {{a}^{m}}\times {{a}^{n}}=2\times 4 \\
& \therefore {{a}^{m}}\times {{a}^{n}}=8 \\
\end{align}$
Now the value of ${{a}^{m}}+{{a}^{n}}$ is
$\begin{align}
& {{a}^{m}}+{{a}^{n}}={{2}^{1}}+{{2}^{2}} \\
& \Rightarrow {{a}^{m}}+{{a}^{n}}=2+4 \\
& \therefore {{a}^{m}}+{{a}^{n}}=6......\left( \text{i} \right) \\
\end{align}$
The value of ${{a}^{m-n}}$ is
$\begin{align}
& {{a}^{m-n}}={{2}^{1-2}} \\
& \Rightarrow {{a}^{m-n}}={{2}^{-1}} \\
& \therefore {{a}^{m-n}}=\dfrac{1}{2}.....\left( \text{ii} \right) \\
\end{align}$
The value of ${{a}^{m+n}}$ is
$\begin{align}
& {{a}^{m+n}}={{2}^{1+2}} \\
& \Rightarrow {{a}^{m+n}}={{2}^{3}} \\
& \therefore {{a}^{m+n}}=8.....\left( \text{iii} \right) \\
\end{align}$
The value of ${{a}^{mn}}$ is
$\begin{align}
& {{a}^{mn}}={{2}^{1\left( 2 \right)}} \\
& \Rightarrow {{a}^{mn}}={{2}^{2}} \\
& \therefore {{a}^{mn}}=4......\left( \text{iv} \right) \\
\end{align}$
From equations $\left( \text{i} \right),\left( \text{ii} \right),\left( \text{iii} \right),\left( \text{iv} \right)$ , we can say that the value of ${{a}^{m}}\times {{a}^{n}}$ is equals to the value of ${{a}^{m+n}}$, hence we can say that
${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$
Note: For this kind of problem it’s the better way to assume the values and check for the option. Some of the similar problem that can be solved by this method are
$\begin{align}
& \dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}} \\
& {{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}
\end{align}$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

