Answer
Verified
495.9k+ views
Hint: In this question you first find out the slope of the given two points. Then use the condition of perpendicularity to find slope of the straight line which is perpendicular to the straight line joining by the given points. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Let the given points be \[\left( {{x_1},{y_1}} \right) = \left( { - 2,6} \right)\] and \[\left( {{x_2},{y_2}} \right) = \left( {4,8} \right)\]
We know that the slope of the straight lines joining by the two points \[\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)\]is given by slope \[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
So, slope of the given points is \[{m_1} = \dfrac{{8 - 6}}{{4 - \left( { - 2} \right)}} = \dfrac{2}{{4 + 2}} = \dfrac{2}{6} = \dfrac{1}{3}\]
If two lines of slopes \[{m_1}{\text{ and }}{m_2}\] are perpendicular, then the condition for perpendicularity is \[{m_1}{m_2} = - 1\].
Let the slope of required line is \[{m_2}\]
By using the condition of perpendicularity we have
\[
\Rightarrow {m_1}{m_2} = - 1 \\
\Rightarrow \dfrac{1}{3}({m_2}) = - 1 \\
\Rightarrow {m_2} = - 1 \times 3 \\
\therefore {m_2} = - 3 \\
\]
Therefore, Slope of the straight line which is perpendicular to the straight line joining the points \[\left( { - 2,6} \right)\] and \[\left( {4,8} \right)\] is equal to \[ - 3\]
Thus, the correct option is C. \[ - 3\]
Note: In the given problem we need not to find the complete straight-line equation formed by joining the points \[\left( { - 2,6} \right)\] and \[\left( {4,8} \right)\]. Since we have to find only the slope, it is enough to find the slope of the straight line joining by the given points.
Complete step-by-step answer:
Let the given points be \[\left( {{x_1},{y_1}} \right) = \left( { - 2,6} \right)\] and \[\left( {{x_2},{y_2}} \right) = \left( {4,8} \right)\]
We know that the slope of the straight lines joining by the two points \[\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)\]is given by slope \[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
So, slope of the given points is \[{m_1} = \dfrac{{8 - 6}}{{4 - \left( { - 2} \right)}} = \dfrac{2}{{4 + 2}} = \dfrac{2}{6} = \dfrac{1}{3}\]
If two lines of slopes \[{m_1}{\text{ and }}{m_2}\] are perpendicular, then the condition for perpendicularity is \[{m_1}{m_2} = - 1\].
Let the slope of required line is \[{m_2}\]
By using the condition of perpendicularity we have
\[
\Rightarrow {m_1}{m_2} = - 1 \\
\Rightarrow \dfrac{1}{3}({m_2}) = - 1 \\
\Rightarrow {m_2} = - 1 \times 3 \\
\therefore {m_2} = - 3 \\
\]
Therefore, Slope of the straight line which is perpendicular to the straight line joining the points \[\left( { - 2,6} \right)\] and \[\left( {4,8} \right)\] is equal to \[ - 3\]
Thus, the correct option is C. \[ - 3\]
Note: In the given problem we need not to find the complete straight-line equation formed by joining the points \[\left( { - 2,6} \right)\] and \[\left( {4,8} \right)\]. Since we have to find only the slope, it is enough to find the slope of the straight line joining by the given points.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE