
How is sodium hydroxide manufactured in industries? Name the process. In this process a gas ${\rm{X}}$ is formed as a by-product. This gas reacts with lime water to give a compound ${\rm{Y}}$, which is used as a bleaching agent in the chemical industry. Identify ${\rm{X}}$ and ${\rm{Y}}$ and write the chemical equation of the reactions involved.
Answer
483.9k+ views
Hint:
We have different industrial manufacturing processes for different compounds including ${\rm{NaOH}}$. The process becomes more useful if the by-products can also be of further use.
Complete step by step solution
We can define sodium hydroxide as a strong base being a hydroxide of an alkali metal. The chemical formula is ${\rm{NaOH}}$. It has varied applications including being used in the manufacturing of soap, detergents, paper and many other different chemicals; it is also used in petroleum refining, in laboratories, or in the purification of aluminum ore, bauxite and many more. This has led to manufacturing of ${\rm{NaOH}}$ on industrial scale.
The industrial manufacturing process for ${\rm{NaOH}}$ involves electrolysis of brine which is basically common salt dissolved in water. The process is known as chlor-alkali process. We will get a better understanding about the suitability of this name after going through the process briefly.
Brine is basically $NaCl\left( {aq} \right)$ and its electrolysis leads to its decomposition for which the chemical reaction can be written as follows:
\[2NaCl\left( {aq} \right) + 2{H_2}O\left( l \right) \to 2NaOH\left( {aq} \right) + C{l_2}\left( g \right) + {H_2}\left( g \right)\]
As it is evident that during manufacturing of ${\rm{NaOH}}$ that it is an alkali, \[C{l_2}\] gas is also produced as a by-product giving the name chlor-alkali to the process. So, we can infer that $X$ is \[C{l_2}\].
Now, as it is given that \[C{l_2}\] reacts with lime water for which we have chemical formula $Ca{\left( {OH} \right)_2}$ and the reaction between the two can be shown by the following chemical equation:
\[C{l_2}\left( g \right) + Ca{\left( {OH} \right)_2}\left( {aq} \right) \to CaOC{l_2}\left( {aq} \right) + {H_2}O\left( l \right)\]
We know that \[CaOC{l_2}\] is called bleaching powder for its bleaching properties. So, we can say that $Y$ is \[CaOC{l_2}\].
Note:
Here, we have one more by-product, \[{H_2}\left( g \right)\] but we have to frame our answer by considering the further related reactions as well which are given by \[C{l_2}\] not \[{H_2}\].
We have different industrial manufacturing processes for different compounds including ${\rm{NaOH}}$. The process becomes more useful if the by-products can also be of further use.
Complete step by step solution
We can define sodium hydroxide as a strong base being a hydroxide of an alkali metal. The chemical formula is ${\rm{NaOH}}$. It has varied applications including being used in the manufacturing of soap, detergents, paper and many other different chemicals; it is also used in petroleum refining, in laboratories, or in the purification of aluminum ore, bauxite and many more. This has led to manufacturing of ${\rm{NaOH}}$ on industrial scale.
The industrial manufacturing process for ${\rm{NaOH}}$ involves electrolysis of brine which is basically common salt dissolved in water. The process is known as chlor-alkali process. We will get a better understanding about the suitability of this name after going through the process briefly.
Brine is basically $NaCl\left( {aq} \right)$ and its electrolysis leads to its decomposition for which the chemical reaction can be written as follows:
\[2NaCl\left( {aq} \right) + 2{H_2}O\left( l \right) \to 2NaOH\left( {aq} \right) + C{l_2}\left( g \right) + {H_2}\left( g \right)\]
As it is evident that during manufacturing of ${\rm{NaOH}}$ that it is an alkali, \[C{l_2}\] gas is also produced as a by-product giving the name chlor-alkali to the process. So, we can infer that $X$ is \[C{l_2}\].
Now, as it is given that \[C{l_2}\] reacts with lime water for which we have chemical formula $Ca{\left( {OH} \right)_2}$ and the reaction between the two can be shown by the following chemical equation:
\[C{l_2}\left( g \right) + Ca{\left( {OH} \right)_2}\left( {aq} \right) \to CaOC{l_2}\left( {aq} \right) + {H_2}O\left( l \right)\]
We know that \[CaOC{l_2}\] is called bleaching powder for its bleaching properties. So, we can say that $Y$ is \[CaOC{l_2}\].
Note:
Here, we have one more by-product, \[{H_2}\left( g \right)\] but we have to frame our answer by considering the further related reactions as well which are given by \[C{l_2}\] not \[{H_2}\].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
