Answer
Verified
431.4k+ views
Hint: In the above question we are asked to determine the temperature of the surface of the Sun. First we will determine the total power radiated by the Sun at the position where the Earth is located with respect to the sun. Further we will use Stefan’s law of Power in order to determine the temperature on the surface of the Sun.
Formula used:
$P={{S}_{\circ }}4\pi {{d}^{2}}$
$P=\sigma A{{T}^{4}}$
Complete step by step answer:
To begin with let us first determine the power radiated by the sun on the Earth. Let us say the distance between the Sun and the Earth is ${R_ \circ }$ . If the solar constant ${S_ \circ }$ is the solar constant, then the Power P is equal to,
$P = {S_ \circ }4\pi {R_ \circ }^2...(1)$
If T is the temperature of the Sun and A is its surface area, then the Power radiated by the sun is equal to by Stefan’s law the power radiated by the sun is given by,
$P = \sigma A{T^4}$
If ${R_S}$ is the radius of the Sun, then we can write the above expression as,
$P = \sigma (4\pi {R_S}^2){T^4}...(2)$
Equating equation 1 and 2 we get,
$\eqalign{
& P = {S_ \circ }4\pi {R_ \circ }^2 = \sigma (4\pi {R_S}^2){T^4} \cr
& \Rightarrow {T^4} = \dfrac{{{S_ \circ }4\pi {R_ \circ }^2}}{{\sigma 4\pi {R_S}^2}} \cr
& \Rightarrow T = {\left( {\dfrac{{{S_ \circ }{R_ \circ }^2}}{{\sigma {R_S}^2}}} \right)^{1/4}} \cr} $
Now substituting the required quantities in the above expression, the temperature of the surface of the Sun we get as,
$\eqalign{
& T = {\left( {\dfrac{{1340w/{m^2}{{(1.5 \times {{10}^{11}}m)}^2}}}{{5.67 \times {{10}^{ - 8}}W{m^{ - 2}}{K^4}{{(7 \times {{10}^8}m)}^2}}}} \right)^{1/4}} \cr
& \Rightarrow T = {\left( {\dfrac{{1340 \times 2.25 \times {{10}^{22}}}}{{5.67 \times {{10}^{ - 8}} \times 49 \times {{10}^{16}}m}}} \right)^{1/4}} \cr
& \therefore T = 5775.8{\text{ }}K \cr} $
Note: $\sigma $ is a universal constant called the Stefan-Boltzmann constant. This is basically due to the fact that the relation for power radiated by the black body was first experimentally deduced by Stefan and later proved theoretically by Boltzmann. IF in a case if a body is not a perfectly black body and has some emissivity $\in $ , then the above relation for power becomes $P=\in \sigma A{{T}^{4}}$ . It is also to be noted that energy radiated also depends on the temperature of the enclosure of the body which radiates the energy.
Formula used:
$P={{S}_{\circ }}4\pi {{d}^{2}}$
$P=\sigma A{{T}^{4}}$
Complete step by step answer:
To begin with let us first determine the power radiated by the sun on the Earth. Let us say the distance between the Sun and the Earth is ${R_ \circ }$ . If the solar constant ${S_ \circ }$ is the solar constant, then the Power P is equal to,
$P = {S_ \circ }4\pi {R_ \circ }^2...(1)$
If T is the temperature of the Sun and A is its surface area, then the Power radiated by the sun is equal to by Stefan’s law the power radiated by the sun is given by,
$P = \sigma A{T^4}$
If ${R_S}$ is the radius of the Sun, then we can write the above expression as,
$P = \sigma (4\pi {R_S}^2){T^4}...(2)$
Equating equation 1 and 2 we get,
$\eqalign{
& P = {S_ \circ }4\pi {R_ \circ }^2 = \sigma (4\pi {R_S}^2){T^4} \cr
& \Rightarrow {T^4} = \dfrac{{{S_ \circ }4\pi {R_ \circ }^2}}{{\sigma 4\pi {R_S}^2}} \cr
& \Rightarrow T = {\left( {\dfrac{{{S_ \circ }{R_ \circ }^2}}{{\sigma {R_S}^2}}} \right)^{1/4}} \cr} $
Now substituting the required quantities in the above expression, the temperature of the surface of the Sun we get as,
$\eqalign{
& T = {\left( {\dfrac{{1340w/{m^2}{{(1.5 \times {{10}^{11}}m)}^2}}}{{5.67 \times {{10}^{ - 8}}W{m^{ - 2}}{K^4}{{(7 \times {{10}^8}m)}^2}}}} \right)^{1/4}} \cr
& \Rightarrow T = {\left( {\dfrac{{1340 \times 2.25 \times {{10}^{22}}}}{{5.67 \times {{10}^{ - 8}} \times 49 \times {{10}^{16}}m}}} \right)^{1/4}} \cr
& \therefore T = 5775.8{\text{ }}K \cr} $
Note: $\sigma $ is a universal constant called the Stefan-Boltzmann constant. This is basically due to the fact that the relation for power radiated by the black body was first experimentally deduced by Stefan and later proved theoretically by Boltzmann. IF in a case if a body is not a perfectly black body and has some emissivity $\in $ , then the above relation for power becomes $P=\in \sigma A{{T}^{4}}$ . It is also to be noted that energy radiated also depends on the temperature of the enclosure of the body which radiates the energy.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE