Solve \[2x - y = 7;{\text{ }}3x - 2y = 11\] by using the matrix inversion method.
Answer
Verified
510k+ views
Hint:- Write equations in form of \[AX = B\]. Here A is a square matrix and its inverse is $A^{-1}$. Matrix inversion method is applied to non-singular square matrix.
As given in the question to solve the given equations using matrix inversion method,
When there is said to solve using matrix inversion method then we had to,
First of all write the system of equations in the form of \[AX = B\].
Where, A will be a matrix containing coefficients of variables of a given equation.
Where, B will be a matrix containing constant terms of the given equations.
And X will be a matrix containing variables of the given equations.
Let the equations will be,
\[ \Rightarrow ax + by = c\] and \[dx + ey = f\]
Then, \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right],X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
c \\
f
\end{array}} \right]\]
So, if the given equations be.
\[ \Rightarrow 2x - y = 7\] (1)
\[ \Rightarrow 3x - 2y = 11\] (2)
So, solving equation 1 and 2 using matrix inversion method. We get,
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right]\] (i.e.) \[AX = B\]
\[ \Rightarrow X = {A^{ - 1}}B\] (3)
Where \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right];X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right]\]
Now, we had to find \[{A^{ - 1}}\].
As, we know that \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)\].
Where \[\left| A \right|\] is the determinant of \[A\] and,
\[ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right| = 2*( - 2) - (3)*( - 1) = - 1\]
And as we know that for any matrix, \[C = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\].
\[ \Rightarrow adj(C) = \left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\]
\[ \Rightarrow \]So, \[adj(A) = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1 \\
{ - 3}&2
\end{array}} \right]\]
\[ \Rightarrow \]Hence, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A) = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{ - 2}&1 \\
{ - 3}&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\]
Now, putting value of \[{A^{ - 1}}\] and \[B\] in the equation 3 we get,
\[
\Rightarrow X = {A^{ - 1}}B = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{14 - 11} \\
{21 - 22}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 1}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 1}
\end{array}} \right] \\
\]
So, on comparing we get \[x = 3\] and \[y = - 1\].
Note:- Whenever we came up with this type of problem then, first write the given
Linear equations in form of \[AX = B\], And then find the value of \[{A^{ - 1}}\] by using formula
\[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)\] and then multiply \[{A^{ - 1}}\] by \[B\]. Then you will get required value of the Matrix \[X\], which gives the value of all variables.
As given in the question to solve the given equations using matrix inversion method,
When there is said to solve using matrix inversion method then we had to,
First of all write the system of equations in the form of \[AX = B\].
Where, A will be a matrix containing coefficients of variables of a given equation.
Where, B will be a matrix containing constant terms of the given equations.
And X will be a matrix containing variables of the given equations.
Let the equations will be,
\[ \Rightarrow ax + by = c\] and \[dx + ey = f\]
Then, \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right],X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
c \\
f
\end{array}} \right]\]
So, if the given equations be.
\[ \Rightarrow 2x - y = 7\] (1)
\[ \Rightarrow 3x - 2y = 11\] (2)
So, solving equation 1 and 2 using matrix inversion method. We get,
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right]\] (i.e.) \[AX = B\]
\[ \Rightarrow X = {A^{ - 1}}B\] (3)
Where \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right];X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right]\]
Now, we had to find \[{A^{ - 1}}\].
As, we know that \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)\].
Where \[\left| A \right|\] is the determinant of \[A\] and,
\[ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right| = 2*( - 2) - (3)*( - 1) = - 1\]
And as we know that for any matrix, \[C = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\].
\[ \Rightarrow adj(C) = \left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\]
\[ \Rightarrow \]So, \[adj(A) = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1 \\
{ - 3}&2
\end{array}} \right]\]
\[ \Rightarrow \]Hence, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A) = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{ - 2}&1 \\
{ - 3}&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\]
Now, putting value of \[{A^{ - 1}}\] and \[B\] in the equation 3 we get,
\[
\Rightarrow X = {A^{ - 1}}B = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
3&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
7 \\
{11}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{14 - 11} \\
{21 - 22}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 1}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 1}
\end{array}} \right] \\
\]
So, on comparing we get \[x = 3\] and \[y = - 1\].
Note:- Whenever we came up with this type of problem then, first write the given
Linear equations in form of \[AX = B\], And then find the value of \[{A^{ - 1}}\] by using formula
\[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)\] and then multiply \[{A^{ - 1}}\] by \[B\]. Then you will get required value of the Matrix \[X\], which gives the value of all variables.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE
A 24 volt battery of internal resistance 4 ohm is connected class 12 physics CBSE