
How do solve $\cos 2x=2\cos x-1$ in the interval $\left[ 0,2\pi \right]$ ?
Answer
453k+ views
Hint: At first, we apply the formula $\cos 2x=2{{\cos }^{2}}x-1$ . We get a quadratic in $\cos x$ . We then apply the Sridhar Acharya formula to get the roots of $\cos x$ in the interval $\left[ 0,2\pi \right]$ .
Complete step by step solution:
The given equation is
$\cos 2x=2\cos x-1$
If we carefully observe the above equation, we can see that if we can express $\cos 2x$ in terms of $\cos x$ , then the equation becomes an equation of $\cos x$ . Luckily, we have a formula between $\cos 2x$ and $\cos x$ which is,
$\cos 2x=2{{\cos }^{2}}x-1$
Putting this value of $\cos 2x$ in the given equation, the equation thus becomes,
$\Rightarrow 2{{\cos }^{2}}x-1=2\cos x-1$
Now, we subtract $2\cos x$ from both sides of the above equation and get,
$\Rightarrow 2{{\cos }^{2}}x-2\cos x-1=-1$
Now, we cancel $1$ from both sides of the above equation and get,
$\Rightarrow 2{{\cos }^{2}}x-2\cos x=0$
We now divide the entire equation by $2$ and get,
$\Rightarrow {{\cos }^{2}}x-\cos x=0$
This is nothing but a quadratic equation in $\cos x$ . Let us take $\cos x=z$ . We then rewrite the entire equation as,
$\Rightarrow {{z}^{2}}-z=0$
Thus, the quadratic equation has transformed into a quadratic equation in $z$ . So, we now need to solve for $z$ by solving this quadratic. We apply the Sridhar Acharya formula which is
$z=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
In our problem, $a=1,b=-1,c=0$ . So, putting these values in the formula, we get,
$\begin{align}
& \Rightarrow z=\dfrac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-4\left( 0 \right)}}{2} \\
& \Rightarrow z=\dfrac{1\pm 1}{2} \\
& \Rightarrow z=\dfrac{1}{2}\pm \dfrac{1}{2} \\
\end{align}$
So, we get two roots of $z$ which are $\dfrac{1}{2}+\dfrac{1}{2}=1$ and $\dfrac{1}{2}-\dfrac{1}{2}=0$ . But, $z=\cos x$ . This means, $\cos x$ has two roots,
$\begin{align}
& \cos x=1...\left( 1 \right) \\
& \cos x=0...\left( 2 \right) \\
\end{align}$
$\left( 1 \right)$ gives $x={{\cos }^{-1}}1$ which gives the values $0,2\pi $ within $\left[ 0,2\pi \right]$ .
$\left( 2 \right)$ gives $x={{\cos }^{-1}}0$ which gives the values $\dfrac{\pi }{2},\dfrac{3\pi }{2}$ within $\left[ 0,2\pi \right]$ .
Therefore, we can conclude that the values of $x$ in $\left[ 0,2\pi \right]$ which satisfy the given equation are $0,\dfrac{\pi }{2},\dfrac{3\pi }{2},2\pi $.
Note: We should be careful while solving the quadratic equation in $\cos x$ and should apply the Sridhar Acharya formula correctly. This equation can also be solved by taking two equations $y=\cos 2x$ and $y=2\cos x-1$ . The points where two curves intersect in $\left[ 0,2\pi \right]$ will be the required answers.
Complete step by step solution:
The given equation is
$\cos 2x=2\cos x-1$
If we carefully observe the above equation, we can see that if we can express $\cos 2x$ in terms of $\cos x$ , then the equation becomes an equation of $\cos x$ . Luckily, we have a formula between $\cos 2x$ and $\cos x$ which is,
$\cos 2x=2{{\cos }^{2}}x-1$
Putting this value of $\cos 2x$ in the given equation, the equation thus becomes,
$\Rightarrow 2{{\cos }^{2}}x-1=2\cos x-1$
Now, we subtract $2\cos x$ from both sides of the above equation and get,
$\Rightarrow 2{{\cos }^{2}}x-2\cos x-1=-1$
Now, we cancel $1$ from both sides of the above equation and get,
$\Rightarrow 2{{\cos }^{2}}x-2\cos x=0$
We now divide the entire equation by $2$ and get,
$\Rightarrow {{\cos }^{2}}x-\cos x=0$
This is nothing but a quadratic equation in $\cos x$ . Let us take $\cos x=z$ . We then rewrite the entire equation as,
$\Rightarrow {{z}^{2}}-z=0$
Thus, the quadratic equation has transformed into a quadratic equation in $z$ . So, we now need to solve for $z$ by solving this quadratic. We apply the Sridhar Acharya formula which is
$z=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
In our problem, $a=1,b=-1,c=0$ . So, putting these values in the formula, we get,
$\begin{align}
& \Rightarrow z=\dfrac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-4\left( 0 \right)}}{2} \\
& \Rightarrow z=\dfrac{1\pm 1}{2} \\
& \Rightarrow z=\dfrac{1}{2}\pm \dfrac{1}{2} \\
\end{align}$
So, we get two roots of $z$ which are $\dfrac{1}{2}+\dfrac{1}{2}=1$ and $\dfrac{1}{2}-\dfrac{1}{2}=0$ . But, $z=\cos x$ . This means, $\cos x$ has two roots,
$\begin{align}
& \cos x=1...\left( 1 \right) \\
& \cos x=0...\left( 2 \right) \\
\end{align}$
$\left( 1 \right)$ gives $x={{\cos }^{-1}}1$ which gives the values $0,2\pi $ within $\left[ 0,2\pi \right]$ .
$\left( 2 \right)$ gives $x={{\cos }^{-1}}0$ which gives the values $\dfrac{\pi }{2},\dfrac{3\pi }{2}$ within $\left[ 0,2\pi \right]$ .
Therefore, we can conclude that the values of $x$ in $\left[ 0,2\pi \right]$ which satisfy the given equation are $0,\dfrac{\pi }{2},\dfrac{3\pi }{2},2\pi $.
Note: We should be careful while solving the quadratic equation in $\cos x$ and should apply the Sridhar Acharya formula correctly. This equation can also be solved by taking two equations $y=\cos 2x$ and $y=2\cos x-1$ . The points where two curves intersect in $\left[ 0,2\pi \right]$ will be the required answers.

Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
