Answer
Verified
428.4k+ views
Hint:In this question, we are given that $3x - 5 < x + 9 \leqslant 5x + 13$ , where “<” indicates that the term on the right side is greater than term on the left side and indicates that the term on the right side is greater than or equal to the term on the left. So, we have \[x + 9\] is greater than $3x - 5$ and smaller than or equal to $5x + 13$ , it is an algebraic expression containing one unknown variable quantity (x). We know that we need an “n” number of equations to find the value of “n” unknown variables. In the given algebraic expression; we have exactly one equation and 1 unknown quantity, so by applying the given arithmetic operations, we can find the value of x.
Complete step by step answer:
We are given that $3x - 5 < x + 9 \leqslant 5x + 13$
We can write the above equation as –
$3x - 5 < x + 9$ and $x + 9 \leqslant 5x + 13$
To find the value of x, we will rearrange the equations as follows –
$ \Rightarrow 3x - x < 9 + 5$ and $9 - 13 \leqslant 5x - x$
$ \Rightarrow 2x < 14$ and $ - 4 \leqslant 4x$
$ \Rightarrow x < 7$ and $ - 1 \leqslant x$
We combine the above two inequalities and get –
$ - 1 \leqslant x < 7$
Hence, when $3x - 5 < x + 9 \leqslant 5x + 13$ , we get the value of x in the interval $[ - 1,7)$ .
Note: In the given algebraic expression, the alphabet representing the unknown quantity has a non- negative integer as power, that is, 1. So the given expression is a polynomial equation and is known as a linear equation as the degree of x is 1 (degree is defined as the highest power of the unknown quantity in a polynomial equation). We can easily solve similar equations by rearranging the equation such that one side of the equation contains the terms containing x and all other terms lie on the other side.
Complete step by step answer:
We are given that $3x - 5 < x + 9 \leqslant 5x + 13$
We can write the above equation as –
$3x - 5 < x + 9$ and $x + 9 \leqslant 5x + 13$
To find the value of x, we will rearrange the equations as follows –
$ \Rightarrow 3x - x < 9 + 5$ and $9 - 13 \leqslant 5x - x$
$ \Rightarrow 2x < 14$ and $ - 4 \leqslant 4x$
$ \Rightarrow x < 7$ and $ - 1 \leqslant x$
We combine the above two inequalities and get –
$ - 1 \leqslant x < 7$
Hence, when $3x - 5 < x + 9 \leqslant 5x + 13$ , we get the value of x in the interval $[ - 1,7)$ .
Note: In the given algebraic expression, the alphabet representing the unknown quantity has a non- negative integer as power, that is, 1. So the given expression is a polynomial equation and is known as a linear equation as the degree of x is 1 (degree is defined as the highest power of the unknown quantity in a polynomial equation). We can easily solve similar equations by rearranging the equation such that one side of the equation contains the terms containing x and all other terms lie on the other side.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE