Answer
Verified
429k+ views
Hint:
Here, we will use the method of elimination to find the solution of the given equations. We will first add the given equations and simplify it to find the value of variable \[x\]. Then we will substitute this value in one of the equations to get the value of \[y\].
Complete step by step solution:
The given linear equations are:
\[5x - y = 33\] ……………………………………………………\[\left( 1 \right)\]
\[7x + y = 51\] …………..………………………………………\[\left( 2 \right)\]
Now, we will add equations \[\left( 1 \right)\] and \[\left( 2 \right)\]. Therefore, we get
\[5x - y + 7x + y = 33 + 51\]
Adding and subtracting the like terms, we get
\[ \Rightarrow 12x = 84\]
Dividing both sides by 12, we get
\[ \Rightarrow x = \dfrac{{84}}{{12}}\]
\[ \Rightarrow x = 7\]
Now, by substituting \[x = 7\] in equation \[\left( 1 \right)\], we get
\[5\left( 7 \right) - y = 33\]
Multiplying the terms, we get
\[ \Rightarrow 35 - y = 33\]
Now, by rewriting the equation, we get
\[ \Rightarrow y = 35 - 33\]
Subtracting the terms, we get
\[ \Rightarrow y = 2\]
Therefore, the solution for the \[5x - y = 33\] and \[7x + y = 51\] is \[x = 7\] and \[y = 2\]
Additional Information:
The solution set for the linear equations of two variables and with only one equation can be obtained only by the method of substitution. But we know that the linear equation of two variables can be solved by elimination method, cross multiplication method and substitution method. We are using the method of elimination where one variable is eliminated either by adding or subtracting the equations.
Note:
We know that an equation is defined as a mathematical statement with an equality sign between the two algebraic expressions. Linear equations are a combination of constants and variables. Linear equation is defined as an equation with the highest degree as 1. We know that the solution set is a set of values which satisfies the relation between the two mathematical expressions.
Here, we will use the method of elimination to find the solution of the given equations. We will first add the given equations and simplify it to find the value of variable \[x\]. Then we will substitute this value in one of the equations to get the value of \[y\].
Complete step by step solution:
The given linear equations are:
\[5x - y = 33\] ……………………………………………………\[\left( 1 \right)\]
\[7x + y = 51\] …………..………………………………………\[\left( 2 \right)\]
Now, we will add equations \[\left( 1 \right)\] and \[\left( 2 \right)\]. Therefore, we get
\[5x - y + 7x + y = 33 + 51\]
Adding and subtracting the like terms, we get
\[ \Rightarrow 12x = 84\]
Dividing both sides by 12, we get
\[ \Rightarrow x = \dfrac{{84}}{{12}}\]
\[ \Rightarrow x = 7\]
Now, by substituting \[x = 7\] in equation \[\left( 1 \right)\], we get
\[5\left( 7 \right) - y = 33\]
Multiplying the terms, we get
\[ \Rightarrow 35 - y = 33\]
Now, by rewriting the equation, we get
\[ \Rightarrow y = 35 - 33\]
Subtracting the terms, we get
\[ \Rightarrow y = 2\]
Therefore, the solution for the \[5x - y = 33\] and \[7x + y = 51\] is \[x = 7\] and \[y = 2\]
Additional Information:
The solution set for the linear equations of two variables and with only one equation can be obtained only by the method of substitution. But we know that the linear equation of two variables can be solved by elimination method, cross multiplication method and substitution method. We are using the method of elimination where one variable is eliminated either by adding or subtracting the equations.
Note:
We know that an equation is defined as a mathematical statement with an equality sign between the two algebraic expressions. Linear equations are a combination of constants and variables. Linear equation is defined as an equation with the highest degree as 1. We know that the solution set is a set of values which satisfies the relation between the two mathematical expressions.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE