
Solve:
$ \int {\sqrt {\cot x} dx} $
Answer
519.9k+ views
Hint: If we try to replace $ \cot x $ with simpler terms like $ \sin x $ and $ \cos x $ , then we will end up complicating it. It is better to solve it using $ \cot x $ itself and by using the required formulas to solve the integral.
Complete step-by-step answer:
Let us consider \[\sqrt {\cot x} = t\], then $ \cot x = {t^2} $
On differentiating both sides of $ \cot x = {t^2} $ with respect to $ x $ , we get,
$
- \cos e{c^2}x.dx = 2t.dt \\
\Rightarrow - \cos e{c^2}x = 2t\dfrac{{dt}}{{dx}} \\
\Rightarrow \cos e{c^2}x = - 2t\dfrac{{dt}}{{dx}} \\
$
Using the formula, $ 1 + {\cot ^2}x = \cos e{c^2}x $ , in the above equation we get,
$ 1 + {\cot ^2}x = - 2t.\dfrac{{dt}}{{dx}} $
Since, $ \cot x = {t^2} $ , on substituting in the above equation, we get,
$ 1 + {t^4} = - 2t.\dfrac{{dt}}{{dx}} $
On rearranging the terms, the equation would be,
$ dx = \dfrac{{ - 2t}}{{1 + {t^4}}}dt $
Substituting the values of $ \sqrt {\cot x} $ and $ dx $ in $ \int {\sqrt {\cot x} dx} $ , we get,
$
I = \int {t.\dfrac{{ - 2t}}{{1 + {t^4}}}dt} \\
\Rightarrow I = \int {\dfrac{{ - 2{t^2}}}{{1 + {t^4}}}dt} \\
$
We can take the negative sign out of the integral,
$ I = - \int {\dfrac{{2{t^2}}}{{1 + {t^4}}}dt} $
To solve this integral, we add and subtract the numerator with $ 1 $ :
\[
I = - \int {\dfrac{{2{t^2} + 1 - 1}}{{{t^4} + 1}}d} t \\
= - \int {\dfrac{{{t^2} + 1 + {t^2} - 1}}{{{t^4} + 1}}d} t \\
= - \int {\left( {\dfrac{{{t^2} + 1}}{{{t^4} + 1}} + \dfrac{{{t^2} - 1}}{{{t^4} + 1}}} \right)d} t \\
\]
Now, we split the integral into two different integrals and solve them separately.
The two integrals are:
$ {I_1} = \int {\dfrac{{{t^2} + 1}}{{{t^4} + 1}}} dt $ and $ {I_2} = \int {\dfrac{{{t^2} - 1}}{{{t^4} + 1}}} dt $
On dividing the numerator and the denominator of the first integral with $ {t^2} $ ,
\[{I_1} = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}}}}} dt\]
The denominator can be written as $ {t^2} + \dfrac{1}{{{t^2}}} = {\left( {t - \dfrac{1}{t}} \right)^2} + 2 $
On replacing this value in the denominator, we get,
\[{I_1} = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{{\left( {t - \dfrac{1}{t}} \right)}^2} + 2}}} dt\]
Let us take $ t - \dfrac{1}{t} = u $
Differentiating the above equation with respect to $ t $ , we get,
$ \left( {1 + \dfrac{1}{{{t^2}}}} \right)dt = du $
On substituting these values in $ {I_1} $ we get,
\[{I_1} = \int {\dfrac{{du}}{{{u^2} + 2}}} \]
Applying the formula, $ \int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left( {\dfrac{x}{a}} \right)} $ in $ {I_1} $ :
$ {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{u}{{\sqrt 2 }}} \right) $
Now we replace $ u $ with the value of $ t $ as we know $ u = t - \dfrac{1}{t} $
$
{I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{t - \dfrac{1}{t}}}{{\sqrt 2 }}} \right) \\
\Rightarrow {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{t^2} - 1}}{{\sqrt 2 t}}} \right) \;
$
Now we replace $ t $ as we know $ t = \sqrt {\cot x} $
$ {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) $
Now, we shall solve $ {I_2} $
$ {I_2} = \int {\dfrac{{{t^2} - 1}}{{{t^4} + 1}}} dt $
On dividing the numerator and the denominator of the second integral with $ {t^2} $ ,
\[{I_2} = \int {\dfrac{{1 - \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}}}}} dt\]
The denominator can be written as $ {t^2} + \dfrac{1}{{{t^2}}} = {\left( {t + \dfrac{1}{t}} \right)^2} - 2 $
\[{I_2} = \int {\dfrac{{1 - \dfrac{1}{{{t^2}}}}}{{{{\left( {t + \dfrac{1}{t}} \right)}^2} - 2}}} dt\]
Let us take $ v = t + \dfrac{1}{t} $
Differentiating the above equation with respect to $ t $ , we get,
$ dv = \left( {1 - \dfrac{1}{{{t^2}}}} \right)dt $
On substituting these values in $ {I_2} $ we get,
\[{I_2} = \int {\dfrac{{dv}}{{{v^2} - 2}}} \]
Applying the formula, $ \int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left( {\dfrac{{x - a}}{{x + a}}} \right)} $ in $ {I_2} $ :
\[{I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{v - \sqrt 2 }}{{v + \sqrt 2 }}} \right)\]
Now we replace $ v $ with the value of $ t $ as we know $ v = t + \dfrac{1}{t} $
\[
{I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{t + \dfrac{1}{t} - \sqrt 2 }}{{t + \dfrac{1}{t} + \sqrt 2 }}} \right) \\
\Rightarrow {I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{{t^2} + 1 - \sqrt 2 t}}{{{t^2} + 1 + \sqrt 2 t}}} \right) \;
\]
Now we replace $ t $ as we know that $ {t^2} = \cot x $
\[{I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right)\]
Now we have to combine both the integrals, $ I = - \left( {{I_1} + {I_2}} \right) $
$ I = - \left[ {\dfrac{1}{{\sqrt 2 }}{{\tan }^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) + \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right)} \right] + C $
Therefore, $ \int {\sqrt {\cot x} dx} = - \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) - \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right) + C $
Where $ C $ represents the constant of integration.
So, the correct answer is “ $ - \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) - \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right) + C $ ”.
Note: Integrals are widely used in a variety of fields. Integrals, for example, are used in probability theory to calculate the probability of a random variable falling within a given range. In the substitution method in the final answer do not forget to put the original function back.
Complete step-by-step answer:
Let us consider \[\sqrt {\cot x} = t\], then $ \cot x = {t^2} $
On differentiating both sides of $ \cot x = {t^2} $ with respect to $ x $ , we get,
$
- \cos e{c^2}x.dx = 2t.dt \\
\Rightarrow - \cos e{c^2}x = 2t\dfrac{{dt}}{{dx}} \\
\Rightarrow \cos e{c^2}x = - 2t\dfrac{{dt}}{{dx}} \\
$
Using the formula, $ 1 + {\cot ^2}x = \cos e{c^2}x $ , in the above equation we get,
$ 1 + {\cot ^2}x = - 2t.\dfrac{{dt}}{{dx}} $
Since, $ \cot x = {t^2} $ , on substituting in the above equation, we get,
$ 1 + {t^4} = - 2t.\dfrac{{dt}}{{dx}} $
On rearranging the terms, the equation would be,
$ dx = \dfrac{{ - 2t}}{{1 + {t^4}}}dt $
Substituting the values of $ \sqrt {\cot x} $ and $ dx $ in $ \int {\sqrt {\cot x} dx} $ , we get,
$
I = \int {t.\dfrac{{ - 2t}}{{1 + {t^4}}}dt} \\
\Rightarrow I = \int {\dfrac{{ - 2{t^2}}}{{1 + {t^4}}}dt} \\
$
We can take the negative sign out of the integral,
$ I = - \int {\dfrac{{2{t^2}}}{{1 + {t^4}}}dt} $
To solve this integral, we add and subtract the numerator with $ 1 $ :
\[
I = - \int {\dfrac{{2{t^2} + 1 - 1}}{{{t^4} + 1}}d} t \\
= - \int {\dfrac{{{t^2} + 1 + {t^2} - 1}}{{{t^4} + 1}}d} t \\
= - \int {\left( {\dfrac{{{t^2} + 1}}{{{t^4} + 1}} + \dfrac{{{t^2} - 1}}{{{t^4} + 1}}} \right)d} t \\
\]
Now, we split the integral into two different integrals and solve them separately.
The two integrals are:
$ {I_1} = \int {\dfrac{{{t^2} + 1}}{{{t^4} + 1}}} dt $ and $ {I_2} = \int {\dfrac{{{t^2} - 1}}{{{t^4} + 1}}} dt $
On dividing the numerator and the denominator of the first integral with $ {t^2} $ ,
\[{I_1} = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}}}}} dt\]
The denominator can be written as $ {t^2} + \dfrac{1}{{{t^2}}} = {\left( {t - \dfrac{1}{t}} \right)^2} + 2 $
On replacing this value in the denominator, we get,
\[{I_1} = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{{\left( {t - \dfrac{1}{t}} \right)}^2} + 2}}} dt\]
Let us take $ t - \dfrac{1}{t} = u $
Differentiating the above equation with respect to $ t $ , we get,
$ \left( {1 + \dfrac{1}{{{t^2}}}} \right)dt = du $
On substituting these values in $ {I_1} $ we get,
\[{I_1} = \int {\dfrac{{du}}{{{u^2} + 2}}} \]
Applying the formula, $ \int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left( {\dfrac{x}{a}} \right)} $ in $ {I_1} $ :
$ {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{u}{{\sqrt 2 }}} \right) $
Now we replace $ u $ with the value of $ t $ as we know $ u = t - \dfrac{1}{t} $
$
{I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{t - \dfrac{1}{t}}}{{\sqrt 2 }}} \right) \\
\Rightarrow {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{t^2} - 1}}{{\sqrt 2 t}}} \right) \;
$
Now we replace $ t $ as we know $ t = \sqrt {\cot x} $
$ {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) $
Now, we shall solve $ {I_2} $
$ {I_2} = \int {\dfrac{{{t^2} - 1}}{{{t^4} + 1}}} dt $
On dividing the numerator and the denominator of the second integral with $ {t^2} $ ,
\[{I_2} = \int {\dfrac{{1 - \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}}}}} dt\]
The denominator can be written as $ {t^2} + \dfrac{1}{{{t^2}}} = {\left( {t + \dfrac{1}{t}} \right)^2} - 2 $
\[{I_2} = \int {\dfrac{{1 - \dfrac{1}{{{t^2}}}}}{{{{\left( {t + \dfrac{1}{t}} \right)}^2} - 2}}} dt\]
Let us take $ v = t + \dfrac{1}{t} $
Differentiating the above equation with respect to $ t $ , we get,
$ dv = \left( {1 - \dfrac{1}{{{t^2}}}} \right)dt $
On substituting these values in $ {I_2} $ we get,
\[{I_2} = \int {\dfrac{{dv}}{{{v^2} - 2}}} \]
Applying the formula, $ \int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left( {\dfrac{{x - a}}{{x + a}}} \right)} $ in $ {I_2} $ :
\[{I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{v - \sqrt 2 }}{{v + \sqrt 2 }}} \right)\]
Now we replace $ v $ with the value of $ t $ as we know $ v = t + \dfrac{1}{t} $
\[
{I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{t + \dfrac{1}{t} - \sqrt 2 }}{{t + \dfrac{1}{t} + \sqrt 2 }}} \right) \\
\Rightarrow {I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{{t^2} + 1 - \sqrt 2 t}}{{{t^2} + 1 + \sqrt 2 t}}} \right) \;
\]
Now we replace $ t $ as we know that $ {t^2} = \cot x $
\[{I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right)\]
Now we have to combine both the integrals, $ I = - \left( {{I_1} + {I_2}} \right) $
$ I = - \left[ {\dfrac{1}{{\sqrt 2 }}{{\tan }^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) + \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right)} \right] + C $
Therefore, $ \int {\sqrt {\cot x} dx} = - \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) - \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right) + C $
Where $ C $ represents the constant of integration.
So, the correct answer is “ $ - \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) - \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right) + C $ ”.
Note: Integrals are widely used in a variety of fields. Integrals, for example, are used in probability theory to calculate the probability of a random variable falling within a given range. In the substitution method in the final answer do not forget to put the original function back.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

