Answer
Verified
429k+ views
Hint: In this question, we have the trigonometric function. Which must solve for the interval\[0\]to\[2\pi \]. In the left-hand side, a trigonometric function \[\sin 2x\] will be there. To solve the above trigonometric equation, we use the formula. And the formula is given as below.
\[ \Rightarrow \sin 2a = 2\sin a\cos a\]
Complete step by step answer:
In this question, an equation of \[x\]is given, which I want to solve. First we know about an equation, an equation is defined as it has two things which are equal. And the equation also likes a statement “this equal that”. The equation has two things or two sides, the left side is known as the left hand side and the right side is known as right hand side. The left hand side is denoted as “LHS” and the right hand side is denoted as “RHS”.
Now, come to the question. The equation is given below.
\[ \Rightarrow \sin 2x + \sin x = 0\]
First, we take the left hand side from the above equation and want to solve it.
Then, the left hand side is.
\[\sin 2x + \sin x\]
We know that, \[\sin 2a = 2\sin a.\cos a\]
Then above the left hand side is written as below.
\[ \Rightarrow \sin 2x + \sin x = 2\sin x\cos x + \sin x\]
Now we write right hand side is equal to right hand side.
Then,
\[2\sin x.\cos x + \sin x = 0\]
We solve the above equation as below.
We take the \[\sin x\] as common from the left hand side.
Then,
\[\sin x\left( {2\cos x + 1} \right) = 0\]
We know that, if the product of any number of terms is equal to zero then one of the terms must equal to zero. Then
\[
\sin x = 0 \\
2\cos x + 1 = 0 \\
\]
Now, we find the value of \[x\]for the interval\[0\]to\[2\pi \].
Then,
\[\sin x = 0\]
For the interval\[0\]to\[2\pi \], the value of\[x\]is.
\[x = 0,\;x = \pi \]And\[x = 2\pi \]
\[2\cos x + 1 = 0\]
\[
2\cos x = - 1 \\
\cos x = - \dfrac{1}{2} \\
\]
For the interval\[0\]to\[2\pi \], the value of\[x\]is.
\[x = \dfrac{{2\pi }}{3}\] And \[x = \dfrac{{4\pi }}{3}\]
Therefore, the value of \[x\] for the interval \[0\] to \[2\pi \] be \[0,\;\pi ,\;\dfrac{{2\pi }}{3},\;\dfrac{{4\pi }}{3},\;2\pi \].
Note:
If you have an equation that you want to solve. Then first you separate the left hand side and right hand side. Then take them one (left hand side or right hand side) and solve it. After taking the other side and solving it. Then write the left hand side is equal to the right hand side. And then solve that for its variable.
\[ \Rightarrow \sin 2a = 2\sin a\cos a\]
Complete step by step answer:
In this question, an equation of \[x\]is given, which I want to solve. First we know about an equation, an equation is defined as it has two things which are equal. And the equation also likes a statement “this equal that”. The equation has two things or two sides, the left side is known as the left hand side and the right side is known as right hand side. The left hand side is denoted as “LHS” and the right hand side is denoted as “RHS”.
Now, come to the question. The equation is given below.
\[ \Rightarrow \sin 2x + \sin x = 0\]
First, we take the left hand side from the above equation and want to solve it.
Then, the left hand side is.
\[\sin 2x + \sin x\]
We know that, \[\sin 2a = 2\sin a.\cos a\]
Then above the left hand side is written as below.
\[ \Rightarrow \sin 2x + \sin x = 2\sin x\cos x + \sin x\]
Now we write right hand side is equal to right hand side.
Then,
\[2\sin x.\cos x + \sin x = 0\]
We solve the above equation as below.
We take the \[\sin x\] as common from the left hand side.
Then,
\[\sin x\left( {2\cos x + 1} \right) = 0\]
We know that, if the product of any number of terms is equal to zero then one of the terms must equal to zero. Then
\[
\sin x = 0 \\
2\cos x + 1 = 0 \\
\]
Now, we find the value of \[x\]for the interval\[0\]to\[2\pi \].
Then,
\[\sin x = 0\]
For the interval\[0\]to\[2\pi \], the value of\[x\]is.
\[x = 0,\;x = \pi \]And\[x = 2\pi \]
\[2\cos x + 1 = 0\]
\[
2\cos x = - 1 \\
\cos x = - \dfrac{1}{2} \\
\]
For the interval\[0\]to\[2\pi \], the value of\[x\]is.
\[x = \dfrac{{2\pi }}{3}\] And \[x = \dfrac{{4\pi }}{3}\]
Therefore, the value of \[x\] for the interval \[0\] to \[2\pi \] be \[0,\;\pi ,\;\dfrac{{2\pi }}{3},\;\dfrac{{4\pi }}{3},\;2\pi \].
Note:
If you have an equation that you want to solve. Then first you separate the left hand side and right hand side. Then take them one (left hand side or right hand side) and solve it. After taking the other side and solving it. Then write the left hand side is equal to the right hand side. And then solve that for its variable.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE