Answer
Verified
502.2k+ views
Hint:-Use the integrating factor method to get the solution for the above problem .
Given differential equation is $\dfrac{{dy}}{{dx}} + y\tan x = {\cos ^3}x$
Let $\tan x = p,{\cos ^3}x = q$
Let the integrating factor (I.F) = ${e^{\int {pdx} }}$
We know that
$p = \tan x$
Substitute the p value in I.F
$ \Rightarrow {e^{\int {\tan xdx} }}$
$ \Rightarrow {e^{\ln (\sec x)}}$ [$\because \int {\tan xdx = \ln (\sec x)} $]
$ \Rightarrow \sec x$ [$\because $ $e$ is the inverse function of ln where it gets cancel]
Here the solution of equation is of the form:
$y(I.F) = \int {q \times I.Fdx} $
Now let us simplify the equation by substituting the values
$\
\Rightarrow y.\sec x = \int {{{\cos }^3}x\sec xdx} \\
\Rightarrow y.\sec x = \int {{{\cos }^3}x\left( {\frac{1}{{\cos x}}} \right)} dx \\
\ $
$ \Rightarrow y.\sec x = \int {{{\cos }^2}xdx} $
$ \Rightarrow y.\sec x = \int {\frac{{1 + \cos 2x}}{2}dx} $ $[\because \cos 2x = 2{\cos ^2}x - 1]$
$ \Rightarrow y = \dfrac{{x.\cos x}}{2} + \frac{1}{4}\sin 2x.\cos x + \cos x + C$
NOTE: In this kind of problems everyone solves the problems without using the integrating factor method (I.F) which is very important to use.
Given differential equation is $\dfrac{{dy}}{{dx}} + y\tan x = {\cos ^3}x$
Let $\tan x = p,{\cos ^3}x = q$
Let the integrating factor (I.F) = ${e^{\int {pdx} }}$
We know that
$p = \tan x$
Substitute the p value in I.F
$ \Rightarrow {e^{\int {\tan xdx} }}$
$ \Rightarrow {e^{\ln (\sec x)}}$ [$\because \int {\tan xdx = \ln (\sec x)} $]
$ \Rightarrow \sec x$ [$\because $ $e$ is the inverse function of ln where it gets cancel]
Here the solution of equation is of the form:
$y(I.F) = \int {q \times I.Fdx} $
Now let us simplify the equation by substituting the values
$\
\Rightarrow y.\sec x = \int {{{\cos }^3}x\sec xdx} \\
\Rightarrow y.\sec x = \int {{{\cos }^3}x\left( {\frac{1}{{\cos x}}} \right)} dx \\
\ $
$ \Rightarrow y.\sec x = \int {{{\cos }^2}xdx} $
$ \Rightarrow y.\sec x = \int {\frac{{1 + \cos 2x}}{2}dx} $ $[\because \cos 2x = 2{\cos ^2}x - 1]$
$ \Rightarrow y = \dfrac{{x.\cos x}}{2} + \frac{1}{4}\sin 2x.\cos x + \cos x + C$
NOTE: In this kind of problems everyone solves the problems without using the integrating factor method (I.F) which is very important to use.
Recently Updated Pages
A uniform rod of length L and mass M is pivoted at class 11 physics JEE_Main
The locus of the midpoint of the chord of contact of class 11 maths JEE_Main
The number of common tangents to the circles x2 + y2 class 11 maths JEE_Main
A circle passes through the intersection points of class 11 maths JEE_Main
The center of a circle passing through the points 0 class 11 maths JEE_Main
If the two circles x 12 + y 32 r2 and x2 + y2 8x + class 11 maths JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE