
Solve the differential equation $\dfrac{{dy}}{{dx}} + y\tan x = {\cos ^3}x$
Answer
614.1k+ views
Hint:-Use the integrating factor method to get the solution for the above problem .
Given differential equation is $\dfrac{{dy}}{{dx}} + y\tan x = {\cos ^3}x$
Let $\tan x = p,{\cos ^3}x = q$
Let the integrating factor (I.F) = ${e^{\int {pdx} }}$
We know that
$p = \tan x$
Substitute the p value in I.F
$ \Rightarrow {e^{\int {\tan xdx} }}$
$ \Rightarrow {e^{\ln (\sec x)}}$ [$\because \int {\tan xdx = \ln (\sec x)} $]
$ \Rightarrow \sec x$ [$\because $ $e$ is the inverse function of ln where it gets cancel]
Here the solution of equation is of the form:
$y(I.F) = \int {q \times I.Fdx} $
Now let us simplify the equation by substituting the values
$\
\Rightarrow y.\sec x = \int {{{\cos }^3}x\sec xdx} \\
\Rightarrow y.\sec x = \int {{{\cos }^3}x\left( {\frac{1}{{\cos x}}} \right)} dx \\
\ $
$ \Rightarrow y.\sec x = \int {{{\cos }^2}xdx} $
$ \Rightarrow y.\sec x = \int {\frac{{1 + \cos 2x}}{2}dx} $ $[\because \cos 2x = 2{\cos ^2}x - 1]$
$ \Rightarrow y = \dfrac{{x.\cos x}}{2} + \frac{1}{4}\sin 2x.\cos x + \cos x + C$
NOTE: In this kind of problems everyone solves the problems without using the integrating factor method (I.F) which is very important to use.
Given differential equation is $\dfrac{{dy}}{{dx}} + y\tan x = {\cos ^3}x$
Let $\tan x = p,{\cos ^3}x = q$
Let the integrating factor (I.F) = ${e^{\int {pdx} }}$
We know that
$p = \tan x$
Substitute the p value in I.F
$ \Rightarrow {e^{\int {\tan xdx} }}$
$ \Rightarrow {e^{\ln (\sec x)}}$ [$\because \int {\tan xdx = \ln (\sec x)} $]
$ \Rightarrow \sec x$ [$\because $ $e$ is the inverse function of ln where it gets cancel]
Here the solution of equation is of the form:
$y(I.F) = \int {q \times I.Fdx} $
Now let us simplify the equation by substituting the values
$\
\Rightarrow y.\sec x = \int {{{\cos }^3}x\sec xdx} \\
\Rightarrow y.\sec x = \int {{{\cos }^3}x\left( {\frac{1}{{\cos x}}} \right)} dx \\
\ $
$ \Rightarrow y.\sec x = \int {{{\cos }^2}xdx} $
$ \Rightarrow y.\sec x = \int {\frac{{1 + \cos 2x}}{2}dx} $ $[\because \cos 2x = 2{\cos ^2}x - 1]$
$ \Rightarrow y = \dfrac{{x.\cos x}}{2} + \frac{1}{4}\sin 2x.\cos x + \cos x + C$
NOTE: In this kind of problems everyone solves the problems without using the integrating factor method (I.F) which is very important to use.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

Which one of the following is not a method of soil class 11 biology CBSE

