
Solve the differential equation $\dfrac{{dy}}{{dx}} + y\tan x = {\cos ^3}x$
Answer
521.1k+ views
Hint:-Use the integrating factor method to get the solution for the above problem .
Given differential equation is $\dfrac{{dy}}{{dx}} + y\tan x = {\cos ^3}x$
Let $\tan x = p,{\cos ^3}x = q$
Let the integrating factor (I.F) = ${e^{\int {pdx} }}$
We know that
$p = \tan x$
Substitute the p value in I.F
$ \Rightarrow {e^{\int {\tan xdx} }}$
$ \Rightarrow {e^{\ln (\sec x)}}$ [$\because \int {\tan xdx = \ln (\sec x)} $]
$ \Rightarrow \sec x$ [$\because $ $e$ is the inverse function of ln where it gets cancel]
Here the solution of equation is of the form:
$y(I.F) = \int {q \times I.Fdx} $
Now let us simplify the equation by substituting the values
$\
\Rightarrow y.\sec x = \int {{{\cos }^3}x\sec xdx} \\
\Rightarrow y.\sec x = \int {{{\cos }^3}x\left( {\frac{1}{{\cos x}}} \right)} dx \\
\ $
$ \Rightarrow y.\sec x = \int {{{\cos }^2}xdx} $
$ \Rightarrow y.\sec x = \int {\frac{{1 + \cos 2x}}{2}dx} $ $[\because \cos 2x = 2{\cos ^2}x - 1]$
$ \Rightarrow y = \dfrac{{x.\cos x}}{2} + \frac{1}{4}\sin 2x.\cos x + \cos x + C$
NOTE: In this kind of problems everyone solves the problems without using the integrating factor method (I.F) which is very important to use.
Given differential equation is $\dfrac{{dy}}{{dx}} + y\tan x = {\cos ^3}x$
Let $\tan x = p,{\cos ^3}x = q$
Let the integrating factor (I.F) = ${e^{\int {pdx} }}$
We know that
$p = \tan x$
Substitute the p value in I.F
$ \Rightarrow {e^{\int {\tan xdx} }}$
$ \Rightarrow {e^{\ln (\sec x)}}$ [$\because \int {\tan xdx = \ln (\sec x)} $]
$ \Rightarrow \sec x$ [$\because $ $e$ is the inverse function of ln where it gets cancel]
Here the solution of equation is of the form:
$y(I.F) = \int {q \times I.Fdx} $
Now let us simplify the equation by substituting the values
$\
\Rightarrow y.\sec x = \int {{{\cos }^3}x\sec xdx} \\
\Rightarrow y.\sec x = \int {{{\cos }^3}x\left( {\frac{1}{{\cos x}}} \right)} dx \\
\ $
$ \Rightarrow y.\sec x = \int {{{\cos }^2}xdx} $
$ \Rightarrow y.\sec x = \int {\frac{{1 + \cos 2x}}{2}dx} $ $[\because \cos 2x = 2{\cos ^2}x - 1]$
$ \Rightarrow y = \dfrac{{x.\cos x}}{2} + \frac{1}{4}\sin 2x.\cos x + \cos x + C$
NOTE: In this kind of problems everyone solves the problems without using the integrating factor method (I.F) which is very important to use.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE

What are the various challenges faced by political class 11 social science CBSE
