Answer
Verified
497.7k+ views
Hint: Use a variable separable method to solve the given differential equation. Integrate with respect to ‘dx’ and ‘dy’ to both sides and simplify it to get the solution of the given differential equation.
Complete step-by-step answer:
We have
$\left( {{e}^{x}}+1 \right)ydy+\left( y+1 \right)dx=0.............\left( i \right)$
Dividing the whole equation by dx, we get,
$\left( {{e}^{x}}+1 \right)y\dfrac{dy}{dx}+\left( y+1 \right)\dfrac{dx}{dx}=0$
Or
$\left( {{e}^{x}}+1 \right)y\dfrac{dy}{dx}+\left( y+1 \right)=0..........(ii)$
Now, as we know, we have three types of differential equations i.e., separable, linear and homogeneous.
Now, by observation, we get that if we divide equation (ii), by ‘y’ then we can separate variables ‘x’ and ‘y’ easily. Hence, the given differential equation belongs to a separable type.
So, on dividing equation (ii), we get
$\left( {{e}^{x}}+1 \right)\dfrac{y}{y}\dfrac{dy}{dx}+\left( \dfrac{y+1}{y} \right)=0$
Or
$\left( {{e}^{x}}+1 \right)\dfrac{dy}{dx}+\dfrac{y+1}{y}=0$
Now transferring $\dfrac{y+1}{y}$ to other side, we get
$\left( {{e}^{x}}+1 \right)\dfrac{dy}{dx}=-\dfrac{\left( y+1 \right)}{y}..........(iii)$
Now, we can transfer functions of variable ‘x’ to one side and functions of variable ‘y’ to another side to integrate the equation with respect to ‘dx’ and ‘dy’.
So, equation (iii) can be written as
$\left( \dfrac{y}{y+1} \right)dy=\dfrac{-1}{{{e}^{x}}+1}dx$
Now, we observe that variable are easily separated, so we can integrate them with respect to
‘x’ and ‘y’ hence, we get
$\int{\dfrac{y}{y+1}dy=-\int{\dfrac{1}{{{e}^{x}}+1}dx............(iv)}}$
Let ${{I}_{1}}=\int{\dfrac{y}{y+1}dy}$ and ${{I}_{2}}=\int{\dfrac{1}{{{e}^{x}}+1}dx}$
Let us solve both the integration individually.
So, we have ${{I}_{1}}$ as,
${{I}_{1}}=\int{\dfrac{y}{y+1}dy}$
Adding and subtracting ‘1’ in numerator, we get,
${{I}_{1}}=\int{\dfrac{\left( y+1 \right)-1}{\left( y+1 \right)}dy}$
Now, we can separate (y+1) as
\[{{I}_{1}}=\int{\dfrac{y+1}{y+1}dy}-\int{\dfrac{1}{y+1}dy}\]
Or
\[{{I}_{1}}=\int{1dy}-\int{\dfrac{1}{y+1}dy}\]
As we know,
$\begin{align}
& \int{\dfrac{1}{x}dx}=\ln x \\
& \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}} \\
\end{align}$
So, ${{I}_{1}}$ can be simplified as,
${{I}_{1}}=\int{{{y}^{0}}dy-\ln \left( y+1 \right)+{{C}_{1}}}$
\[{{I}_{1}}=y-\ln \left( y+1 \right)+{{C}_{1}}............\left( v \right)\]
Now, we have ${{I}_{2}}$ as
${{I}_{2}}=\int{\dfrac{1}{{{e}^{x}}+1}dx}$
Multiplying by ${{e}^{-x}}$ in numerator and denominator we get,
${{I}_{2}}=\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}.{{e}^{-x}}+{{e}^{-x}}}dx}$
As we have property of surds as, ${{m}^{a}}.{{m}^{b}}={{m}^{a+b}}$
So, we can write ${{I}_{2}}$ as
${{I}_{2}}=\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx}..............\left( vi \right)$
Let us suppose $1+{{e}^{-x}}=t$.
Differentiating both sides w.r.t. x, we get
$-{{e}^{-x}}=\dfrac{dt}{dx}$
Where $\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}$, so, we have
${{e}^{-x}}dx=-dt$
Substituting these values in equation (vi), we get
${{I}_{2}}=\int{\dfrac{-dt}{t}=-\int{\dfrac{dt}{t}}}$
Now, we know that $\int{\dfrac{1}{t}dt=\ln t}$ hence,
${{I}_{2}}=-\ln t+{{C}_{2}}$
Since, we have value of t as \[1+{{e}^{-x}}\], hence ${{I}_{2}}$ in terms of x can be given as
${{I}_{2}}=-\ln \left( 1+{{e}^{-x}} \right)+{{C}_{2}}.............\left( vii \right)$
Hence, from equation (iv), (v) and (vii) we get,
$\begin{align}
& y-\ln \left( y+1 \right)+{{C}_{1}}=-\left( -\ln \left( 1+{{e}^{-x}} \right)+{{C}_{2}} \right) \\
& y-\ln \left( y+1 \right)+{{C}_{1}}=\ln \left( 1+{{e}^{-x}} \right)-{{C}_{2}} \\
& y-\ln \left( y+1 \right)=\ln \left( 1+{{e}^{-x}} \right)+{{C}_{3}} \\
\end{align}$
Where $-{{C}_{2}}-{{C}_{1}}={{C}_{3}}$
Let us replace ${{C}_{3}}$ by ‘ln C’, so we get above equation as
$y-\ln \left( y+1 \right)=\ln \left( 1+{{e}^{-x}} \right)+\ln C........\left( viii \right)$
Now, we know that \[\text{ln }a+\ln b=\ln ab\], so, equation (viii) can be given as
$y=\ln \left( y+1 \right)+\ln \left( C\left( 1+{{e}^{-x}} \right) \right)$
$y=\ln \left( C\left( y+1 \right)\left( 1+{{e}^{-x}} \right) \right)$
As we know that if ${{a}^{x}}=N$ then $x={{\log }_{a}}N$ or vice versa.
Hence, above equation can be written as
$C\left( y+1 \right)\left( 1+{{e}^{-x}} \right)={{e}^{y}}$
This is the required solution.
Note: One can go wrong if trying to solve the given differential equation by a homogenous method, as the given equation is not a homogeneous differential equation so we cannot apply this method to a given variable separable differential equation.
Observing the given differential equation as a variable separable equation is the key point of the question.
Complete step-by-step answer:
We have
$\left( {{e}^{x}}+1 \right)ydy+\left( y+1 \right)dx=0.............\left( i \right)$
Dividing the whole equation by dx, we get,
$\left( {{e}^{x}}+1 \right)y\dfrac{dy}{dx}+\left( y+1 \right)\dfrac{dx}{dx}=0$
Or
$\left( {{e}^{x}}+1 \right)y\dfrac{dy}{dx}+\left( y+1 \right)=0..........(ii)$
Now, as we know, we have three types of differential equations i.e., separable, linear and homogeneous.
Now, by observation, we get that if we divide equation (ii), by ‘y’ then we can separate variables ‘x’ and ‘y’ easily. Hence, the given differential equation belongs to a separable type.
So, on dividing equation (ii), we get
$\left( {{e}^{x}}+1 \right)\dfrac{y}{y}\dfrac{dy}{dx}+\left( \dfrac{y+1}{y} \right)=0$
Or
$\left( {{e}^{x}}+1 \right)\dfrac{dy}{dx}+\dfrac{y+1}{y}=0$
Now transferring $\dfrac{y+1}{y}$ to other side, we get
$\left( {{e}^{x}}+1 \right)\dfrac{dy}{dx}=-\dfrac{\left( y+1 \right)}{y}..........(iii)$
Now, we can transfer functions of variable ‘x’ to one side and functions of variable ‘y’ to another side to integrate the equation with respect to ‘dx’ and ‘dy’.
So, equation (iii) can be written as
$\left( \dfrac{y}{y+1} \right)dy=\dfrac{-1}{{{e}^{x}}+1}dx$
Now, we observe that variable are easily separated, so we can integrate them with respect to
‘x’ and ‘y’ hence, we get
$\int{\dfrac{y}{y+1}dy=-\int{\dfrac{1}{{{e}^{x}}+1}dx............(iv)}}$
Let ${{I}_{1}}=\int{\dfrac{y}{y+1}dy}$ and ${{I}_{2}}=\int{\dfrac{1}{{{e}^{x}}+1}dx}$
Let us solve both the integration individually.
So, we have ${{I}_{1}}$ as,
${{I}_{1}}=\int{\dfrac{y}{y+1}dy}$
Adding and subtracting ‘1’ in numerator, we get,
${{I}_{1}}=\int{\dfrac{\left( y+1 \right)-1}{\left( y+1 \right)}dy}$
Now, we can separate (y+1) as
\[{{I}_{1}}=\int{\dfrac{y+1}{y+1}dy}-\int{\dfrac{1}{y+1}dy}\]
Or
\[{{I}_{1}}=\int{1dy}-\int{\dfrac{1}{y+1}dy}\]
As we know,
$\begin{align}
& \int{\dfrac{1}{x}dx}=\ln x \\
& \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}} \\
\end{align}$
So, ${{I}_{1}}$ can be simplified as,
${{I}_{1}}=\int{{{y}^{0}}dy-\ln \left( y+1 \right)+{{C}_{1}}}$
\[{{I}_{1}}=y-\ln \left( y+1 \right)+{{C}_{1}}............\left( v \right)\]
Now, we have ${{I}_{2}}$ as
${{I}_{2}}=\int{\dfrac{1}{{{e}^{x}}+1}dx}$
Multiplying by ${{e}^{-x}}$ in numerator and denominator we get,
${{I}_{2}}=\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}.{{e}^{-x}}+{{e}^{-x}}}dx}$
As we have property of surds as, ${{m}^{a}}.{{m}^{b}}={{m}^{a+b}}$
So, we can write ${{I}_{2}}$ as
${{I}_{2}}=\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx}..............\left( vi \right)$
Let us suppose $1+{{e}^{-x}}=t$.
Differentiating both sides w.r.t. x, we get
$-{{e}^{-x}}=\dfrac{dt}{dx}$
Where $\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}$, so, we have
${{e}^{-x}}dx=-dt$
Substituting these values in equation (vi), we get
${{I}_{2}}=\int{\dfrac{-dt}{t}=-\int{\dfrac{dt}{t}}}$
Now, we know that $\int{\dfrac{1}{t}dt=\ln t}$ hence,
${{I}_{2}}=-\ln t+{{C}_{2}}$
Since, we have value of t as \[1+{{e}^{-x}}\], hence ${{I}_{2}}$ in terms of x can be given as
${{I}_{2}}=-\ln \left( 1+{{e}^{-x}} \right)+{{C}_{2}}.............\left( vii \right)$
Hence, from equation (iv), (v) and (vii) we get,
$\begin{align}
& y-\ln \left( y+1 \right)+{{C}_{1}}=-\left( -\ln \left( 1+{{e}^{-x}} \right)+{{C}_{2}} \right) \\
& y-\ln \left( y+1 \right)+{{C}_{1}}=\ln \left( 1+{{e}^{-x}} \right)-{{C}_{2}} \\
& y-\ln \left( y+1 \right)=\ln \left( 1+{{e}^{-x}} \right)+{{C}_{3}} \\
\end{align}$
Where $-{{C}_{2}}-{{C}_{1}}={{C}_{3}}$
Let us replace ${{C}_{3}}$ by ‘ln C’, so we get above equation as
$y-\ln \left( y+1 \right)=\ln \left( 1+{{e}^{-x}} \right)+\ln C........\left( viii \right)$
Now, we know that \[\text{ln }a+\ln b=\ln ab\], so, equation (viii) can be given as
$y=\ln \left( y+1 \right)+\ln \left( C\left( 1+{{e}^{-x}} \right) \right)$
$y=\ln \left( C\left( y+1 \right)\left( 1+{{e}^{-x}} \right) \right)$
As we know that if ${{a}^{x}}=N$ then $x={{\log }_{a}}N$ or vice versa.
Hence, above equation can be written as
$C\left( y+1 \right)\left( 1+{{e}^{-x}} \right)={{e}^{y}}$
This is the required solution.
Note: One can go wrong if trying to solve the given differential equation by a homogenous method, as the given equation is not a homogeneous differential equation so we cannot apply this method to a given variable separable differential equation.
Observing the given differential equation as a variable separable equation is the key point of the question.
Recently Updated Pages
In order to prevent the spoilage of potato chips they are packed in plastic bags in an atmosphere of
Which body formulates the foreign policy of India class 10 social science ICSE
When NaCl is dissolved in water the sodium ion becomes
The aqueous solution of aluminium chloride is acidic due to
What is the message of the poem Nine Gold Medals class 10 english ICSE
Give the summary of the story the enchanted pool class 10 english ICSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
10 examples of friction in our daily life
What organs are located on the left side of your body class 11 biology CBSE