
Solve the differential equation:
$\left( {x{y^2} + x} \right)dx + \left( {{x^2}y + y} \right)dy = 0$.
Answer
608.4k+ views
Hint: Separate the terms with $x$ variable on one side and terms with $y$ variable on other side. And then solve the equation integrating both sides.
The given differential equation is $\left( {x{y^2} + x} \right)dx + \left( {{x^2}y + y} \right)dy = 0$. This can be simplified as:
\[
\Rightarrow x\left( {{y^2} + 1} \right)dx = - y\left( {{x^2} + 1} \right)dy, \\
\Rightarrow \dfrac{x}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{y}{{\left( {{y^2} + 1} \right)}}dy, \\
\Rightarrow \dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy \\
\]
Integrating both sides, we’ll get:
\[ \Rightarrow \int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = - \int {\dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy,} \]
We know that \[\int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = \log \left| {{x^2} + 1} \right| + C\], Using this in the above equation, we’ll get:
\[
\Rightarrow \log \left| {{x^2} + 1} \right| = - \log \left| {{y^2} + 1} \right| + C, \\
\Rightarrow \log \left| {{x^2} + 1} \right| + \log \left| {{y^2} + 1} \right| = C, \\
\Rightarrow \log \left( {\left| {{x^2} + 1} \right|\left| {{y^2} + 1} \right|} \right) = C, \\
\Rightarrow \left| {\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right)} \right| = {e^C}, \\
\Rightarrow \left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C} \\
\]
Thus the solution of the differential equation is \[\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C}\]
Note: The method used in solving the above differential equation is called variable separation method i.e. keeping the terms containing the same variable on one side and terms having other variables on the other side. And then integrating on both the sides.
The given differential equation is $\left( {x{y^2} + x} \right)dx + \left( {{x^2}y + y} \right)dy = 0$. This can be simplified as:
\[
\Rightarrow x\left( {{y^2} + 1} \right)dx = - y\left( {{x^2} + 1} \right)dy, \\
\Rightarrow \dfrac{x}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{y}{{\left( {{y^2} + 1} \right)}}dy, \\
\Rightarrow \dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy \\
\]
Integrating both sides, we’ll get:
\[ \Rightarrow \int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = - \int {\dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy,} \]
We know that \[\int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = \log \left| {{x^2} + 1} \right| + C\], Using this in the above equation, we’ll get:
\[
\Rightarrow \log \left| {{x^2} + 1} \right| = - \log \left| {{y^2} + 1} \right| + C, \\
\Rightarrow \log \left| {{x^2} + 1} \right| + \log \left| {{y^2} + 1} \right| = C, \\
\Rightarrow \log \left( {\left| {{x^2} + 1} \right|\left| {{y^2} + 1} \right|} \right) = C, \\
\Rightarrow \left| {\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right)} \right| = {e^C}, \\
\Rightarrow \left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C} \\
\]
Thus the solution of the differential equation is \[\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C}\]
Note: The method used in solving the above differential equation is called variable separation method i.e. keeping the terms containing the same variable on one side and terms having other variables on the other side. And then integrating on both the sides.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

