Answer
Verified
428.1k+ views
Hint: We recall the domain range of tan inverse function that is $\arctan \left( x \right)$or ${{\tan }^{-1}}x$. We recall the relationship ${{\cot }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}$ and the relation ${{\cot }^{-1}}x={{\tan }^{-1}}\left( \dfrac{1}{x} \right)$ for $x>0$ and ${{\cot }^{-1}}x=\pi +{{\tan }^{-1}}\left( \dfrac{1}{x} \right)$ for $x<0$. We use these identities to find the possible solutions of $x$.
Complete step by step answer:
We know that inverse tangent function $\arctan \left( x \right)$ or ${{\tan }^{-1}}x$ has the domain as the real number set and the range as the interval$\left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$. \[\]
We are given the following inverse tangent function in the question.
\[\begin{align}
& \arctan \left( x \right)+\arctan \left( \dfrac{1}{x} \right)=\dfrac{\pi }{2} \\
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right)=\dfrac{\pi }{2} \\
\end{align}\]
We see clearly that $x\ne 0$since $\dfrac{1}{x}$ is well defined in the above equation. We know from reciprocal relation between tangent inverse and cotangent inverse that
\[{{\cot }^{-1}}x=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{1}{x} \right) & \text{if }x>0 \\
\pi +{{\tan }^{-1}}\left( \dfrac{1}{x} \right) & \text{if }x<0 \\
\end{matrix} \right.\]
Let us take the first case for $x > 0$ and use the above identity we have
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( x \right) \\
\end{align}\]
We know from complementary angle relation that ${{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( x \right)=\dfrac{\pi }{2}$. So the given equation $\arctan \left( x \right)+\arctan \left( \dfrac{1}{x} \right)=\dfrac{\pi }{2}$ has the solution in the set. $\left( 0,\infty \right)$. If we take second case
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( x \right)-\pi \\
& \Rightarrow \dfrac{\pi }{2}-\pi =\dfrac{-\pi }{2} \\
\end{align}\]
So all the values $x\in \left( -\infty ,0 \right)$ do not satisfy the given equation. So the only valid solution we have obtained is $\left( 0,\infty \right)$.
Additional information:
Alternative method: We know from double angle formula that
\[{{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)\]
The above identity is true when$ab < 1$. We add $\pi $ in the right hand side of the above equation if $ab > 1,a > 0,b > 0$ and add $-\pi $ when $ab>1,a<0,b<0$. So let us proceed from left hand side of given equation and use ten above identify to have;
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{1-x\cdot \dfrac{1}{x}} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{1-1} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{0} \right) \\
\end{align}\]
We see that above step argument for tangent inverse function is undefined and for $x>0$ the range restricts to $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ and we have
\[{{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{0} \right)=\dfrac{\pi }{2}\]
Hence the solution set is $\left( 0,\infty \right)$.\[\]
Note:
We should remember other reciprocal of the argument relation in tan and cot inverse function like ${{\tan }^{-1}}\left( \dfrac{1}{x} \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( x \right)$ if $x>0$ and ${{\tan }^{-1}}\left( \dfrac{1}{x} \right)=-\dfrac{\pi }{2}-{{\tan }^{-1}}\left( x \right)$ if $x < 0$ for future problems. We note that just like an inverse ${{\cot }^{-1}}x$ has the domain the real number but its range is $\left( 0,\pi \right)$.
Complete step by step answer:
We know that inverse tangent function $\arctan \left( x \right)$ or ${{\tan }^{-1}}x$ has the domain as the real number set and the range as the interval$\left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$. \[\]
We are given the following inverse tangent function in the question.
\[\begin{align}
& \arctan \left( x \right)+\arctan \left( \dfrac{1}{x} \right)=\dfrac{\pi }{2} \\
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right)=\dfrac{\pi }{2} \\
\end{align}\]
We see clearly that $x\ne 0$since $\dfrac{1}{x}$ is well defined in the above equation. We know from reciprocal relation between tangent inverse and cotangent inverse that
\[{{\cot }^{-1}}x=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{1}{x} \right) & \text{if }x>0 \\
\pi +{{\tan }^{-1}}\left( \dfrac{1}{x} \right) & \text{if }x<0 \\
\end{matrix} \right.\]
Let us take the first case for $x > 0$ and use the above identity we have
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( x \right) \\
\end{align}\]
We know from complementary angle relation that ${{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( x \right)=\dfrac{\pi }{2}$. So the given equation $\arctan \left( x \right)+\arctan \left( \dfrac{1}{x} \right)=\dfrac{\pi }{2}$ has the solution in the set. $\left( 0,\infty \right)$. If we take second case
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( x \right)-\pi \\
& \Rightarrow \dfrac{\pi }{2}-\pi =\dfrac{-\pi }{2} \\
\end{align}\]
So all the values $x\in \left( -\infty ,0 \right)$ do not satisfy the given equation. So the only valid solution we have obtained is $\left( 0,\infty \right)$.
Additional information:
Alternative method: We know from double angle formula that
\[{{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)\]
The above identity is true when$ab < 1$. We add $\pi $ in the right hand side of the above equation if $ab > 1,a > 0,b > 0$ and add $-\pi $ when $ab>1,a<0,b<0$. So let us proceed from left hand side of given equation and use ten above identify to have;
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{1-x\cdot \dfrac{1}{x}} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{1-1} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{0} \right) \\
\end{align}\]
We see that above step argument for tangent inverse function is undefined and for $x>0$ the range restricts to $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ and we have
\[{{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{0} \right)=\dfrac{\pi }{2}\]
Hence the solution set is $\left( 0,\infty \right)$.\[\]
Note:
We should remember other reciprocal of the argument relation in tan and cot inverse function like ${{\tan }^{-1}}\left( \dfrac{1}{x} \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( x \right)$ if $x>0$ and ${{\tan }^{-1}}\left( \dfrac{1}{x} \right)=-\dfrac{\pi }{2}-{{\tan }^{-1}}\left( x \right)$ if $x < 0$ for future problems. We note that just like an inverse ${{\cot }^{-1}}x$ has the domain the real number but its range is $\left( 0,\pi \right)$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE