![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
How do you solve the equation $\dfrac{2}{3}{x^2} - 4 = 12?$
Answer
441.9k+ views
Hint: First of all take the given expression, take all the constants on one side and the term with variable on one side and then simplify the equation for the resultant required value for the unknown term “x”.
Complete step-by-step solution:
Take the given expression: $\dfrac{2}{3}{x^2} - 4 = 12$
Move constant on the right hand side of the equation. When you move any term from one side to another then the sign of the term also changes. Positive term becomes negative and negative term becomes positive.
$\dfrac{2}{3}{x^2} = 12 + 4$
Simplify the expression on the right hand side of the equation.
$\dfrac{2}{3}{x^2} = 16$
The term in division on one side, if moved to the opposite side then it goes to the numerator part.
$2{x^2} = 16 \times 3$
Simplify the above equation-
$2{x^2} = 48$
The term multiplicative on one side if moved to the opposite side then it goes to the denominator part.
$ \Rightarrow {x^2} = \dfrac{{48}}{2}$
Find factors of the term on the numerator.
$ \Rightarrow {x^2} = \dfrac{{24 \times 2}}{2}$
Common factors from the numerator and the denominator cancels each other. Therefore, remove from the numerator and the denominator.
$ \Rightarrow {x^2} = 24$
Take square root on both sides of the above equation.
$ \Rightarrow \sqrt {{x^2}} = \sqrt {24} $
Square and square root cancel each other on the left hand side of the equation.
$
\Rightarrow x = \sqrt {4 \times 6} \\
\Rightarrow x = \sqrt {{2^2} \times 6} \\
\Rightarrow x = \sqrt {{2^2}} \times \sqrt 6 \\
$
Square and square root cancel in the above equation.
$ \Rightarrow x = \pm 2\sqrt 6 $
This is the required solution.
Note: Always remember that the square of positive or the negative number always gives us the positive number but the square root of positive number gives positive or the negative number therefore, we have kept plus or minus ahead of the number. Be careful about the plus or minus signs. Be good in multiples and remember at least twenty.
Complete step-by-step solution:
Take the given expression: $\dfrac{2}{3}{x^2} - 4 = 12$
Move constant on the right hand side of the equation. When you move any term from one side to another then the sign of the term also changes. Positive term becomes negative and negative term becomes positive.
$\dfrac{2}{3}{x^2} = 12 + 4$
Simplify the expression on the right hand side of the equation.
$\dfrac{2}{3}{x^2} = 16$
The term in division on one side, if moved to the opposite side then it goes to the numerator part.
$2{x^2} = 16 \times 3$
Simplify the above equation-
$2{x^2} = 48$
The term multiplicative on one side if moved to the opposite side then it goes to the denominator part.
$ \Rightarrow {x^2} = \dfrac{{48}}{2}$
Find factors of the term on the numerator.
$ \Rightarrow {x^2} = \dfrac{{24 \times 2}}{2}$
Common factors from the numerator and the denominator cancels each other. Therefore, remove from the numerator and the denominator.
$ \Rightarrow {x^2} = 24$
Take square root on both sides of the above equation.
$ \Rightarrow \sqrt {{x^2}} = \sqrt {24} $
Square and square root cancel each other on the left hand side of the equation.
$
\Rightarrow x = \sqrt {4 \times 6} \\
\Rightarrow x = \sqrt {{2^2} \times 6} \\
\Rightarrow x = \sqrt {{2^2}} \times \sqrt 6 \\
$
Square and square root cancel in the above equation.
$ \Rightarrow x = \pm 2\sqrt 6 $
This is the required solution.
Note: Always remember that the square of positive or the negative number always gives us the positive number but the square root of positive number gives positive or the negative number therefore, we have kept plus or minus ahead of the number. Be careful about the plus or minus signs. Be good in multiples and remember at least twenty.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The area of a 6m wide road outside a garden in all class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the electric flux through a cube of side 1 class 10 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The radius and height of a cylinder are in the ratio class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Why is there a time difference of about 5 hours between class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Change the following sentences into negative and interrogative class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write a letter to the principal requesting him to grant class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write an application to the principal requesting five class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)