
Solve the equation: $(y log x - 1)ydx = xdy$
Answer
599.1k+ views
- Hint: This is a linear differential equation. We can solve this by bringing it in the form-
$\dfrac{{dy}}{{dx}} + yP\left( {\text{x}} \right) = {\text{Q}}\left( {\text{x}} \right)$
Here P(x) and Q(x) are functions in x. After bringing the equation in this form, we find and multiply it with the integrating factor which is given by-
${\text{I}}.{\text{F}} = {{\text{e}}^{\smallint {\text{P}}\left( {\text{x}} \right)dx}}$
The equation can then be written in the form-
${\text{y}}\left( {{\text{I}}.{\text{F}}} \right) = \smallint {\text{Q}}\left( {\text{x}} \right).\left( {{\text{I}}.{\text{F}}} \right) + {\text{C}}$
Complete step-by-step solution -
We have been given that-
$(ylogx - 1)ydx = xdy$
Dividing the equation by dx, we get-
$\begin{align}
& {\text{x}}\dfrac{{dy}}{{dx}} = \left( {{{\text{y}}^2}logx - {\text{y}}} \right) \\
& \dfrac{{dy}}{{dx}} = \dfrac{{{{\text{y}}^2}}}{{\text{x}}}logx - \dfrac{{\text{y}}}{{\text{x}}} \\
& \dfrac{{dy}}{{dx}} + \dfrac{{\text{y}}}{{\text{x}}} = {{\text{y}}^2}\dfrac{{logx}}{{\text{x}}} \\
\end{align} $
We know that the term Q(x) should be independent of y, so we need to divide the equation with $y^2$ as-
$\dfrac{1}{{{{\text{y}}^2}}}\dfrac{{dy}}{{dx}} + \dfrac{1}{{xy}} = \dfrac{{logx}}{{\text{x}}}$
To simplify further, we need to make a substitution as-
${\text{t}} = \dfrac{1}{{\text{y}}}$
$dt = - \dfrac{1}{{{{\text{y}}^2}}}dy$
Substituting these values in the equation we get-
$ - \dfrac{{dt}}{{dx}} + \dfrac{{\text{t}}}{{\text{x}}} = \dfrac{{logx}}{{\text{x}}}$
$\dfrac{{dt}}{{dx}} - \dfrac{{\text{t}}}{{\text{x}}} = - \dfrac{{logx}}{{\text{x}}}$
By comparison, we can clearly see that-
${\text{P}}\left( {\text{x}} \right) = - \dfrac{1}{{\text{x}}}\;and\;{\text{Q}}\left( {\text{x}} \right) = - \dfrac{{logx}}{{\text{x}}}$
We can find the integrating factor as-
$\begin{align}
&{\text{I}}.{\text{F}} = {{\text{e}}^{\smallint {\text{P}}\left( {\text{x}} \right)dx}} = {{\text{e}}^{\smallint - \dfrac{1}{{\text{x}}}dx}} = {{\text{e}}^{ - logx}} = {{\text{e}}^{\log \left( {\dfrac{1}{{\text{x}}}} \right)}} \\
& We\;know\;that\;{{\text{e}}^{logx}} = {\text{x}}\;so,\; \\
& {\text{I}}.{\text{F}} = {{\text{e}}^{\log \left( {\dfrac{1}{{\text{x}}}} \right)}} = \dfrac{1}{{\text{x}}} \\
\end{align} $
The equation can now be written as-
${\text{y}}\left( {{\text{I}}.{\text{F}}} \right) = \smallint {\text{Q}}\left( {\text{x}} \right).\left( {{\text{I}}.{\text{F}}} \right) + {\text{C}}$
${\text{t}}\left( {\dfrac{1}{{\text{x}}}} \right) = \smallint \left( { - \dfrac{{logx}}{{\text{x}}}} \right)\left( {\dfrac{1}{{\text{x}}}} \right)dx$
$\dfrac{{\text{t}}}{{\text{x}}} = - \smallint \dfrac{{logx}}{{{{\text{x}}^2}}}dx$
We will need to use integration by parts to further solve this problem-
$\smallint {\text{u}}\left( {\text{x}} \right){\text{v}}\left( {\text{x}} \right)dx = \left[ {{\text{v}}\left( {\text{x}} \right).\smallint {\text{u}}\left( {\text{x}} \right)dx} \right] - \smallint \left( {{\text{v}}'\left( {\text{x}} \right).\smallint {\text{u}}\left( {\text{x}} \right)dx} \right)dx$
We will assume that v(x) = logx and u(x) = x-2
$\begin{align}
&= \smallint \dfrac{{logx}}{{{{\text{x}}^2}}}dx \\
&= logx\smallint \dfrac{1}{{{{\text{x}}^2}}}dx - \smallint \left( {\dfrac{{d\left( {logx} \right)}}{{d{\text{x}}}}.\smallint \dfrac{1}{{{{\text{x}}^2}}}dx} \right)dx \\
&= - \dfrac{{logx}}{{\text{x}}} - \left( {\smallint \dfrac{1}{{\text{x}}}.\left( { - \dfrac{1}{{\text{x}}}} \right)dx} \right) \\
&= - \dfrac{{logx}}{{\text{x}}} + \smallint \dfrac{1}{{{{\text{x}}^2}}}dx = - \dfrac{{logx}}{{\text{x}}} - \dfrac{1}{{\text{x}}} + {\text{C}} \\
\end{align} $
So, we can proceed as-
$\dfrac{{\text{t}}}{{\text{x}}} = \dfrac{{logx}}{{\text{x}}} + \dfrac{1}{{\text{x}}} + {\text{C}} \\$
We know that ${\text{t}} = \dfrac{1}{{\text{y}}}$ so,
$\dfrac{1}{{xy}} = \dfrac{{logx}}{{\text{x}}} + \dfrac{1}{{\text{x}}} + {\text{C}} \\$
Multiplying by ${\text{x}}$ and taking reciprocal we get,
${\text{y}} = \dfrac{1}{{1 + logx + Cx}} \\ $
Note: We need to know multiple concepts in this problem ranging from differential equations and calculus to the concept of logarithmic functions. We need to remember the formula for integrations and even the method to find the solution of first order linear differential equations. We should also never forget to add the constant of integration.
$\dfrac{{dy}}{{dx}} + yP\left( {\text{x}} \right) = {\text{Q}}\left( {\text{x}} \right)$
Here P(x) and Q(x) are functions in x. After bringing the equation in this form, we find and multiply it with the integrating factor which is given by-
${\text{I}}.{\text{F}} = {{\text{e}}^{\smallint {\text{P}}\left( {\text{x}} \right)dx}}$
The equation can then be written in the form-
${\text{y}}\left( {{\text{I}}.{\text{F}}} \right) = \smallint {\text{Q}}\left( {\text{x}} \right).\left( {{\text{I}}.{\text{F}}} \right) + {\text{C}}$
Complete step-by-step solution -
We have been given that-
$(ylogx - 1)ydx = xdy$
Dividing the equation by dx, we get-
$\begin{align}
& {\text{x}}\dfrac{{dy}}{{dx}} = \left( {{{\text{y}}^2}logx - {\text{y}}} \right) \\
& \dfrac{{dy}}{{dx}} = \dfrac{{{{\text{y}}^2}}}{{\text{x}}}logx - \dfrac{{\text{y}}}{{\text{x}}} \\
& \dfrac{{dy}}{{dx}} + \dfrac{{\text{y}}}{{\text{x}}} = {{\text{y}}^2}\dfrac{{logx}}{{\text{x}}} \\
\end{align} $
We know that the term Q(x) should be independent of y, so we need to divide the equation with $y^2$ as-
$\dfrac{1}{{{{\text{y}}^2}}}\dfrac{{dy}}{{dx}} + \dfrac{1}{{xy}} = \dfrac{{logx}}{{\text{x}}}$
To simplify further, we need to make a substitution as-
${\text{t}} = \dfrac{1}{{\text{y}}}$
$dt = - \dfrac{1}{{{{\text{y}}^2}}}dy$
Substituting these values in the equation we get-
$ - \dfrac{{dt}}{{dx}} + \dfrac{{\text{t}}}{{\text{x}}} = \dfrac{{logx}}{{\text{x}}}$
$\dfrac{{dt}}{{dx}} - \dfrac{{\text{t}}}{{\text{x}}} = - \dfrac{{logx}}{{\text{x}}}$
By comparison, we can clearly see that-
${\text{P}}\left( {\text{x}} \right) = - \dfrac{1}{{\text{x}}}\;and\;{\text{Q}}\left( {\text{x}} \right) = - \dfrac{{logx}}{{\text{x}}}$
We can find the integrating factor as-
$\begin{align}
&{\text{I}}.{\text{F}} = {{\text{e}}^{\smallint {\text{P}}\left( {\text{x}} \right)dx}} = {{\text{e}}^{\smallint - \dfrac{1}{{\text{x}}}dx}} = {{\text{e}}^{ - logx}} = {{\text{e}}^{\log \left( {\dfrac{1}{{\text{x}}}} \right)}} \\
& We\;know\;that\;{{\text{e}}^{logx}} = {\text{x}}\;so,\; \\
& {\text{I}}.{\text{F}} = {{\text{e}}^{\log \left( {\dfrac{1}{{\text{x}}}} \right)}} = \dfrac{1}{{\text{x}}} \\
\end{align} $
The equation can now be written as-
${\text{y}}\left( {{\text{I}}.{\text{F}}} \right) = \smallint {\text{Q}}\left( {\text{x}} \right).\left( {{\text{I}}.{\text{F}}} \right) + {\text{C}}$
${\text{t}}\left( {\dfrac{1}{{\text{x}}}} \right) = \smallint \left( { - \dfrac{{logx}}{{\text{x}}}} \right)\left( {\dfrac{1}{{\text{x}}}} \right)dx$
$\dfrac{{\text{t}}}{{\text{x}}} = - \smallint \dfrac{{logx}}{{{{\text{x}}^2}}}dx$
We will need to use integration by parts to further solve this problem-
$\smallint {\text{u}}\left( {\text{x}} \right){\text{v}}\left( {\text{x}} \right)dx = \left[ {{\text{v}}\left( {\text{x}} \right).\smallint {\text{u}}\left( {\text{x}} \right)dx} \right] - \smallint \left( {{\text{v}}'\left( {\text{x}} \right).\smallint {\text{u}}\left( {\text{x}} \right)dx} \right)dx$
We will assume that v(x) = logx and u(x) = x-2
$\begin{align}
&= \smallint \dfrac{{logx}}{{{{\text{x}}^2}}}dx \\
&= logx\smallint \dfrac{1}{{{{\text{x}}^2}}}dx - \smallint \left( {\dfrac{{d\left( {logx} \right)}}{{d{\text{x}}}}.\smallint \dfrac{1}{{{{\text{x}}^2}}}dx} \right)dx \\
&= - \dfrac{{logx}}{{\text{x}}} - \left( {\smallint \dfrac{1}{{\text{x}}}.\left( { - \dfrac{1}{{\text{x}}}} \right)dx} \right) \\
&= - \dfrac{{logx}}{{\text{x}}} + \smallint \dfrac{1}{{{{\text{x}}^2}}}dx = - \dfrac{{logx}}{{\text{x}}} - \dfrac{1}{{\text{x}}} + {\text{C}} \\
\end{align} $
So, we can proceed as-
$\dfrac{{\text{t}}}{{\text{x}}} = \dfrac{{logx}}{{\text{x}}} + \dfrac{1}{{\text{x}}} + {\text{C}} \\$
We know that ${\text{t}} = \dfrac{1}{{\text{y}}}$ so,
$\dfrac{1}{{xy}} = \dfrac{{logx}}{{\text{x}}} + \dfrac{1}{{\text{x}}} + {\text{C}} \\$
Multiplying by ${\text{x}}$ and taking reciprocal we get,
${\text{y}} = \dfrac{1}{{1 + logx + Cx}} \\ $
Note: We need to know multiple concepts in this problem ranging from differential equations and calculus to the concept of logarithmic functions. We need to remember the formula for integrations and even the method to find the solution of first order linear differential equations. We should also never forget to add the constant of integration.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

