Answer
Verified
496.8k+ views
Hint: To make such an equation simple, multiply the expressions written inside the square root and do some operations to make the expression written inside the square root and the right hand side the same.
Complete step-by-step answer:
As, the given equation is
$8 + 9\sqrt {(3x - 1)(x - 2)} = 3{x^2} - 7x$ ………. (1)
First, we multiply the expressions written inside square root of equation 1
$8 + 9\sqrt {3{x^2} - 7x + 2} = 3{x^2} - 7x$ ………… (2)
As, we can see that the expression inside the square root will be the same as the expression on the other side of the equation, if we make a few adjustments.
In this case, we had to add 2 to both sides to get the required equation. So, adding 2 both side in the equation (2), we get
$10 + 9\sqrt {3{x^2} - 7x + 2} = 3{x^2} - 7x + 2$
Now, we can see that there are common terms on both sides of the equation so to simplify the equation, we take the common terms as a variable.
Let \[3{x^2} - 7x + 2 = {t^2}\] …………… (3)
Therefore, our equation reduces to
$10 + 9t = {t^2}$ ………….. (4)
Now, equation 4 can be easily solved as it reduces to a quadratic equation.
Solving equation 4 by factorisation,
$
\Rightarrow {t^2} - 9t - 10 = 0 \\
\Rightarrow {t^2} - 10t + t - 10 = 0 \\
\Rightarrow t(t - 10) + 1(t - 10) = 0 \\
\Rightarrow (t + 1)(t - 10) = 0 \\
\Rightarrow t = - 1,10 \\
$
We get two values of t, so from equation 3,
$ \Rightarrow 3{x^2} - 7x + 2 = {t^2}$
When \[t = - 1\], then
$ \Rightarrow 3{x^2} - 7x + 2 = {( - 1)^2}$
Solving the equation, we get
$ \Rightarrow 3{x^2} - 7x + 1 = 0$
Solving the above quadratic equation using the quadratic formula
$
\Rightarrow x = \dfrac{{7 \pm \sqrt {49 - 4(3)(1)} }}{{2(3)}} \\
\Rightarrow x = \dfrac{{7 \pm \sqrt {37} }}{6} \\
$
Also, when $t = 10$;
$ \Rightarrow 3{x^2} - 7x + 2 = {(10)^2}$
Solving the equation using factorisation, we get
$
\Rightarrow 3{x^2} - 7x - 98 = 0 \\
\Rightarrow 3{x^2} - 21x + 14x - 98 = 0 \\
\Rightarrow 3x(x - 7) + 14(x - 7) = 0 \\
\Rightarrow (3x + 14)(x - 7) = 0 \\
\Rightarrow x = - \dfrac{{14}}{3},7 \\
$
Hence, the values of x are $\dfrac{{7 - \sqrt {37} }}{6},\dfrac{{7 + \sqrt {37} }}{6}, - \dfrac{{14}}{3}$ and $7$.
Note: In such types of problems, we have to simplify the equation in such a way that the whole equation can be represented by another variable but in a simpler form which is easily solvable.
Complete step-by-step answer:
As, the given equation is
$8 + 9\sqrt {(3x - 1)(x - 2)} = 3{x^2} - 7x$ ………. (1)
First, we multiply the expressions written inside square root of equation 1
$8 + 9\sqrt {3{x^2} - 7x + 2} = 3{x^2} - 7x$ ………… (2)
As, we can see that the expression inside the square root will be the same as the expression on the other side of the equation, if we make a few adjustments.
In this case, we had to add 2 to both sides to get the required equation. So, adding 2 both side in the equation (2), we get
$10 + 9\sqrt {3{x^2} - 7x + 2} = 3{x^2} - 7x + 2$
Now, we can see that there are common terms on both sides of the equation so to simplify the equation, we take the common terms as a variable.
Let \[3{x^2} - 7x + 2 = {t^2}\] …………… (3)
Therefore, our equation reduces to
$10 + 9t = {t^2}$ ………….. (4)
Now, equation 4 can be easily solved as it reduces to a quadratic equation.
Solving equation 4 by factorisation,
$
\Rightarrow {t^2} - 9t - 10 = 0 \\
\Rightarrow {t^2} - 10t + t - 10 = 0 \\
\Rightarrow t(t - 10) + 1(t - 10) = 0 \\
\Rightarrow (t + 1)(t - 10) = 0 \\
\Rightarrow t = - 1,10 \\
$
We get two values of t, so from equation 3,
$ \Rightarrow 3{x^2} - 7x + 2 = {t^2}$
When \[t = - 1\], then
$ \Rightarrow 3{x^2} - 7x + 2 = {( - 1)^2}$
Solving the equation, we get
$ \Rightarrow 3{x^2} - 7x + 1 = 0$
Solving the above quadratic equation using the quadratic formula
$
\Rightarrow x = \dfrac{{7 \pm \sqrt {49 - 4(3)(1)} }}{{2(3)}} \\
\Rightarrow x = \dfrac{{7 \pm \sqrt {37} }}{6} \\
$
Also, when $t = 10$;
$ \Rightarrow 3{x^2} - 7x + 2 = {(10)^2}$
Solving the equation using factorisation, we get
$
\Rightarrow 3{x^2} - 7x - 98 = 0 \\
\Rightarrow 3{x^2} - 21x + 14x - 98 = 0 \\
\Rightarrow 3x(x - 7) + 14(x - 7) = 0 \\
\Rightarrow (3x + 14)(x - 7) = 0 \\
\Rightarrow x = - \dfrac{{14}}{3},7 \\
$
Hence, the values of x are $\dfrac{{7 - \sqrt {37} }}{6},\dfrac{{7 + \sqrt {37} }}{6}, - \dfrac{{14}}{3}$ and $7$.
Note: In such types of problems, we have to simplify the equation in such a way that the whole equation can be represented by another variable but in a simpler form which is easily solvable.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE