Answer
Verified
496.8k+ views
Hint: Factorize, ${{x}^{2}}-9=\left( x-3 \right)\left( x+3 \right).$ Take average of all four brackets and replace it with another variable. Form biquadratic simpler than given.
Complete step-by-step answer:
The given equation is;
$\left( 2x-7 \right)\left( {{x}^{2}}-9 \right)\left( 2x+5 \right)=91..........\left( 1 \right)$
As, we know ${{a}^{2}}-{{b}^{2}}=\left( a-6 \right)\left( a+b \right)$; we can use this identity with ${{x}^{2}}-9={{x}^{2}}-{{3}^{2}}$ and replace it with $\left( x-3 \right)\left( x+3 \right)$. Hence, equation (1) will become;
$\left( 2x-7 \right)\left( x-3 \right)\left( x+3 \right)\left( 2x+5 \right)=91$
Taking out ‘2’ as a common from first bracket and last bracket of above equation, we get
\[\begin{align}
& 2\left( x-\dfrac{7}{2} \right)\left( x-3 \right)\left( x+3 \right)2\left( x+\dfrac{5}{2} \right)=91 \\
& or \\
& 4\left( x-\dfrac{7}{2} \right)\left( x-3 \right)\left( x+3 \right)\left( x+\dfrac{5}{2} \right)=91......\left( 2 \right) \\
\end{align}\]
Now, let us take another variable ‘y’ which can be obtained by getting average of all brackets as follows;
$\begin{align}
& y=\dfrac{x-\dfrac{7}{2}+x-3+x+3+x+\dfrac{5}{2}}{4} \\
& y=\dfrac{4x-1}{4} \\
& y=x-\dfrac{1}{4} \\
& or \\
& x=y+\dfrac{1}{4}........................\left( 3 \right) \\
\end{align}$
Now, we can replace variable ‘x’ by ‘y’ in equation (2) with the help of relation obtained in equation (3);
Hence, equation (3) in variable ‘y’ can be expressed as;
$\begin{align}
& 4\left( y+\dfrac{1}{4}-\dfrac{7}{2} \right)\left( y+\dfrac{1}{4}-3 \right)\left( y+\dfrac{1}{4}+3 \right)\left( y+\dfrac{1}{4}+\dfrac{5}{2} \right)=91 \\
& 4\left( y+\dfrac{1-14}{4} \right)\left( y+\dfrac{1-12}{4} \right)\left( y+\dfrac{1+12}{4} \right)\left( y+\dfrac{1+10}{4} \right)=91 \\
& 4\left( y-\dfrac{13}{4} \right)\left( y-\dfrac{11}{4} \right)\left( y+\dfrac{13}{4} \right)\left( y+\dfrac{11}{4} \right)=91 \\
& Or \\
& 4\left( y-\dfrac{13}{4} \right)\left( y+\dfrac{13}{4} \right)\left( y-\dfrac{11}{4} \right)\left( y+\dfrac{11}{4} \right)=91...........\left( 4 \right) \\
\end{align}$
As, we know $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}.$ therefore, we can replace
$\begin{align}
& \left( y-\dfrac{13}{4} \right)\left( y+\dfrac{13}{4} \right)by\text{ }{{y}^{2}}-{{\left( \dfrac{13}{4} \right)}^{2}}, \\
& and \\
& \left( y-\dfrac{11}{4} \right)\left( y+\dfrac{11}{4} \right)by\text{ }{{y}^{2}}-{{\left( \dfrac{11}{4} \right)}^{2}} \\
\end{align}$
Hence, rewriting equation (4) , we get
\[\begin{align}
& 4\left( {{y}^{2}}-{{\left( \dfrac{13}{4} \right)}^{2}} \right)\left( {{y}^{2}}-\dfrac{{{\left( 11 \right)}^{2}}}{{{\left( 4 \right)}^{2}}} \right)=91 \\
& 4\left( {{y}^{2}}-\dfrac{169}{16} \right)\left( {{y}^{2}}-\dfrac{121}{16} \right)=91 \\
\end{align}\]
Taking ${{y}^{2}}=z$ to minimize the complexity of problem in above equation, we get
$\begin{align}
& 4\left( z-\dfrac{169}{16} \right)\left( z-\dfrac{121}{16} \right)=91 \\
& 4\dfrac{\left( 16z-169 \right)\left( 16z-121 \right)}{16\times 16}=91 \\
\end{align}$
On simplifying the above equation and cross multiplying as well, we get;
$\left( 16z-169 \right)\left( 16z-121 \right)=64\times 91$
Multiplying both the brackets, we get
\[\begin{align}
& 256{{z}^{2}}-121\times 16z-169\times 16z+169\times 121=64\times 91 \\
& 256{{z}^{2}}-290z\times 16+169\times 121=64\times 91 \\
& 256{{z}^{2}}-4640z+14625=0.............\left( 5 \right) \\
\end{align}\]
Now, we have a quadratic equation, so it will have two roots and can be given by quadratic formula as given below;
If, we have any quadratic equation,$A{{x}^{2}}Bx+C=0$, then roots of quadratic equation are;
$x=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}$
Now, using the quadratic formula with equation (5), we get;
$\begin{align}
& z=\dfrac{4640\pm \sqrt{{{\left( 4640 \right)}^{2}}-4\times 256\times 14625}}{2\times 256} \\
& z=\dfrac{4640\pm \sqrt{6553600}}{2\times 256} \\
\end{align}$
Now, as we know that $\sqrt{6553600}=2560$ ,
Hence, roots can be simplified as;
$\begin{align}
& z=\dfrac{4640\pm 2560}{512} \\
& z=\dfrac{4640}{512}\pm \dfrac{2560}{512} \\
\end{align}$
Simplifying z, we get;
$z=\dfrac{145}{16}\pm 5$
Now, we have two roots as
$\begin{align}
& z=\dfrac{145+80}{16} \\
& and \\
& z=\dfrac{145-80}{16} \\
& z=\dfrac{225}{16},\dfrac{65}{16}......................\left( 6 \right) \\
\end{align}$
Now, we have ${{y}^{2}}=z$
Hence,
\[\begin{align}
& y=\pm \sqrt{\dfrac{225}{16}},y=\pm \sqrt{\dfrac{65}{16}} \\
& Or \\
& y=\dfrac{\pm 15}{4},y=\dfrac{\pm \sqrt{65}}{4} \\
\end{align}\]
Now, for calculating x, we have to use equation (3) i.e. \[x=y+\dfrac{1}{4}\];
Hence, we get
$\begin{align}
& x=\dfrac{\pm 15}{4}+\dfrac{1}{4} \\
& and \\
& x=\pm \dfrac{\sqrt{65}}{4}+\dfrac{1}{4} \\
\end{align}$
Now four values of x, can be given as
$\begin{align}
& x=\dfrac{15+1}{4},\dfrac{-15+1}{4},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \\
& Or \\
& x=4,\dfrac{-7}{2},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \\
\end{align}$
Therefore, values of ‘x’ after solving the given equation are;
$\left( 4,\dfrac{-7}{2},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \right)$
Note: One can multiply the brackets to get bi-quadratic equation but it is really complex to get all four solutions from that equation. We have to put a lot of value into getting roots. And one cannot predict $\dfrac{-7}{2}$ as a root. Hence, this approach is more complex than the given solution.
Calculation is an important task of this question as we have to multiply bigger numbers and calculating square root of 6553600, one can go wrong with calculations as well.
Taking an average of four brackets is the key point of the question.
Complete step-by-step answer:
The given equation is;
$\left( 2x-7 \right)\left( {{x}^{2}}-9 \right)\left( 2x+5 \right)=91..........\left( 1 \right)$
As, we know ${{a}^{2}}-{{b}^{2}}=\left( a-6 \right)\left( a+b \right)$; we can use this identity with ${{x}^{2}}-9={{x}^{2}}-{{3}^{2}}$ and replace it with $\left( x-3 \right)\left( x+3 \right)$. Hence, equation (1) will become;
$\left( 2x-7 \right)\left( x-3 \right)\left( x+3 \right)\left( 2x+5 \right)=91$
Taking out ‘2’ as a common from first bracket and last bracket of above equation, we get
\[\begin{align}
& 2\left( x-\dfrac{7}{2} \right)\left( x-3 \right)\left( x+3 \right)2\left( x+\dfrac{5}{2} \right)=91 \\
& or \\
& 4\left( x-\dfrac{7}{2} \right)\left( x-3 \right)\left( x+3 \right)\left( x+\dfrac{5}{2} \right)=91......\left( 2 \right) \\
\end{align}\]
Now, let us take another variable ‘y’ which can be obtained by getting average of all brackets as follows;
$\begin{align}
& y=\dfrac{x-\dfrac{7}{2}+x-3+x+3+x+\dfrac{5}{2}}{4} \\
& y=\dfrac{4x-1}{4} \\
& y=x-\dfrac{1}{4} \\
& or \\
& x=y+\dfrac{1}{4}........................\left( 3 \right) \\
\end{align}$
Now, we can replace variable ‘x’ by ‘y’ in equation (2) with the help of relation obtained in equation (3);
Hence, equation (3) in variable ‘y’ can be expressed as;
$\begin{align}
& 4\left( y+\dfrac{1}{4}-\dfrac{7}{2} \right)\left( y+\dfrac{1}{4}-3 \right)\left( y+\dfrac{1}{4}+3 \right)\left( y+\dfrac{1}{4}+\dfrac{5}{2} \right)=91 \\
& 4\left( y+\dfrac{1-14}{4} \right)\left( y+\dfrac{1-12}{4} \right)\left( y+\dfrac{1+12}{4} \right)\left( y+\dfrac{1+10}{4} \right)=91 \\
& 4\left( y-\dfrac{13}{4} \right)\left( y-\dfrac{11}{4} \right)\left( y+\dfrac{13}{4} \right)\left( y+\dfrac{11}{4} \right)=91 \\
& Or \\
& 4\left( y-\dfrac{13}{4} \right)\left( y+\dfrac{13}{4} \right)\left( y-\dfrac{11}{4} \right)\left( y+\dfrac{11}{4} \right)=91...........\left( 4 \right) \\
\end{align}$
As, we know $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}.$ therefore, we can replace
$\begin{align}
& \left( y-\dfrac{13}{4} \right)\left( y+\dfrac{13}{4} \right)by\text{ }{{y}^{2}}-{{\left( \dfrac{13}{4} \right)}^{2}}, \\
& and \\
& \left( y-\dfrac{11}{4} \right)\left( y+\dfrac{11}{4} \right)by\text{ }{{y}^{2}}-{{\left( \dfrac{11}{4} \right)}^{2}} \\
\end{align}$
Hence, rewriting equation (4) , we get
\[\begin{align}
& 4\left( {{y}^{2}}-{{\left( \dfrac{13}{4} \right)}^{2}} \right)\left( {{y}^{2}}-\dfrac{{{\left( 11 \right)}^{2}}}{{{\left( 4 \right)}^{2}}} \right)=91 \\
& 4\left( {{y}^{2}}-\dfrac{169}{16} \right)\left( {{y}^{2}}-\dfrac{121}{16} \right)=91 \\
\end{align}\]
Taking ${{y}^{2}}=z$ to minimize the complexity of problem in above equation, we get
$\begin{align}
& 4\left( z-\dfrac{169}{16} \right)\left( z-\dfrac{121}{16} \right)=91 \\
& 4\dfrac{\left( 16z-169 \right)\left( 16z-121 \right)}{16\times 16}=91 \\
\end{align}$
On simplifying the above equation and cross multiplying as well, we get;
$\left( 16z-169 \right)\left( 16z-121 \right)=64\times 91$
Multiplying both the brackets, we get
\[\begin{align}
& 256{{z}^{2}}-121\times 16z-169\times 16z+169\times 121=64\times 91 \\
& 256{{z}^{2}}-290z\times 16+169\times 121=64\times 91 \\
& 256{{z}^{2}}-4640z+14625=0.............\left( 5 \right) \\
\end{align}\]
Now, we have a quadratic equation, so it will have two roots and can be given by quadratic formula as given below;
If, we have any quadratic equation,$A{{x}^{2}}Bx+C=0$, then roots of quadratic equation are;
$x=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}$
Now, using the quadratic formula with equation (5), we get;
$\begin{align}
& z=\dfrac{4640\pm \sqrt{{{\left( 4640 \right)}^{2}}-4\times 256\times 14625}}{2\times 256} \\
& z=\dfrac{4640\pm \sqrt{6553600}}{2\times 256} \\
\end{align}$
Now, as we know that $\sqrt{6553600}=2560$ ,
Hence, roots can be simplified as;
$\begin{align}
& z=\dfrac{4640\pm 2560}{512} \\
& z=\dfrac{4640}{512}\pm \dfrac{2560}{512} \\
\end{align}$
Simplifying z, we get;
$z=\dfrac{145}{16}\pm 5$
Now, we have two roots as
$\begin{align}
& z=\dfrac{145+80}{16} \\
& and \\
& z=\dfrac{145-80}{16} \\
& z=\dfrac{225}{16},\dfrac{65}{16}......................\left( 6 \right) \\
\end{align}$
Now, we have ${{y}^{2}}=z$
Hence,
\[\begin{align}
& y=\pm \sqrt{\dfrac{225}{16}},y=\pm \sqrt{\dfrac{65}{16}} \\
& Or \\
& y=\dfrac{\pm 15}{4},y=\dfrac{\pm \sqrt{65}}{4} \\
\end{align}\]
Now, for calculating x, we have to use equation (3) i.e. \[x=y+\dfrac{1}{4}\];
Hence, we get
$\begin{align}
& x=\dfrac{\pm 15}{4}+\dfrac{1}{4} \\
& and \\
& x=\pm \dfrac{\sqrt{65}}{4}+\dfrac{1}{4} \\
\end{align}$
Now four values of x, can be given as
$\begin{align}
& x=\dfrac{15+1}{4},\dfrac{-15+1}{4},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \\
& Or \\
& x=4,\dfrac{-7}{2},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \\
\end{align}$
Therefore, values of ‘x’ after solving the given equation are;
$\left( 4,\dfrac{-7}{2},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \right)$
Note: One can multiply the brackets to get bi-quadratic equation but it is really complex to get all four solutions from that equation. We have to put a lot of value into getting roots. And one cannot predict $\dfrac{-7}{2}$ as a root. Hence, this approach is more complex than the given solution.
Calculation is an important task of this question as we have to multiply bigger numbers and calculating square root of 6553600, one can go wrong with calculations as well.
Taking an average of four brackets is the key point of the question.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE