Solve the following equations:
$
\left( {x + y} \right)\left( {x + z} \right) = 30 \\
\left( {y + z} \right)\left( {y + x} \right) = 15, \\
\left( {z + x} \right)\left( {z + y} \right) = 18 \\
$
This question has multiple correct answers.
$
A.\left( {2,4,1} \right) \\
B.\left( { - 2, - 4, - 1} \right) \\
C.\left( {3,1,2} \right) \\
D.\left( { - 3, - 1, - 2} \right) \\
$
Answer
Verified
500.4k+ views
Hint:In this question assume $x + y = a,y + z = b,z + x = c$, find the value of $a,b,c$ by substitution method and the form the sets . Use these steps to find the solution of the pair of linear equations in two variables .
Complete step-by-step answer:
According to the question , the given equations are $\left( {x + y} \right)\left( {x + z} \right) = 30,\left( {y + z} \right)\left( {y + x} \right) = 15,\left( {z + x} \right)\left( {z + y} \right) = 18$
Put $x + y = a,y + z = b,z + x = c$
We get $ac = 30.....\left( i \right)$
$
ab = 15........\left( {ii} \right) \\
cb = 18.........\left( {iii} \right) \\
$
From $\left( {iii} \right)$, we have
$b = \dfrac{{18}}{c}$
Substituting $b$ in $\left( {ii} \right)$, we get
$
\dfrac{a}{c} = \dfrac{{15}}{{18}} \\
\Rightarrow a = \dfrac{{15}}{{18}}c \\
$
Substituting $a$ in $\left( i \right)$, we get
$
\dfrac{{15}}{{18}}c \times c = 30 \\
\Rightarrow {c^2} = 36 \\
\Rightarrow c = \pm 6 \\
$
We have $a = \dfrac{{15}}{{18}}c$
$ \Rightarrow a = \pm 5$
Thus $b = \dfrac{{18}}{c}$
$ \Rightarrow b = \pm 3$
Now the given equations become
$
x + y = 6 \\
y + z = 5 \\
z + x = 3
$
and
$
x + y = - 6 \\
y + z = - 5 \\
z + x = - 3 \\
.$
Solving the first set of equations, we get
$x = 2,y = 4$ and $z = 1$
Solving the second set , we get
$x = - 2,y = - 4$ and $z = - 1$
Note: In such types of questions it is advisable to use either graphical method of pair of linear equations or substitution method of pair of linear equations of two variables to get the required answer.
Complete step-by-step answer:
According to the question , the given equations are $\left( {x + y} \right)\left( {x + z} \right) = 30,\left( {y + z} \right)\left( {y + x} \right) = 15,\left( {z + x} \right)\left( {z + y} \right) = 18$
Put $x + y = a,y + z = b,z + x = c$
We get $ac = 30.....\left( i \right)$
$
ab = 15........\left( {ii} \right) \\
cb = 18.........\left( {iii} \right) \\
$
From $\left( {iii} \right)$, we have
$b = \dfrac{{18}}{c}$
Substituting $b$ in $\left( {ii} \right)$, we get
$
\dfrac{a}{c} = \dfrac{{15}}{{18}} \\
\Rightarrow a = \dfrac{{15}}{{18}}c \\
$
Substituting $a$ in $\left( i \right)$, we get
$
\dfrac{{15}}{{18}}c \times c = 30 \\
\Rightarrow {c^2} = 36 \\
\Rightarrow c = \pm 6 \\
$
We have $a = \dfrac{{15}}{{18}}c$
$ \Rightarrow a = \pm 5$
Thus $b = \dfrac{{18}}{c}$
$ \Rightarrow b = \pm 3$
Now the given equations become
$
x + y = 6 \\
y + z = 5 \\
z + x = 3
$
and
$
x + y = - 6 \\
y + z = - 5 \\
z + x = - 3 \\
.$
Solving the first set of equations, we get
$x = 2,y = 4$ and $z = 1$
Solving the second set , we get
$x = - 2,y = - 4$ and $z = - 1$
Note: In such types of questions it is advisable to use either graphical method of pair of linear equations or substitution method of pair of linear equations of two variables to get the required answer.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
What are the major means of transport Explain each class 12 social science CBSE