Answer
Verified
430.5k+ views
Hint:To find the value of \[x\] and \[y\] we will first form a matrix from the two equation and then find the determinant of the matrix A and then we will find the inverse of matrix A and form product with a \[2\times 1\] matrix of constant value of the equation given as:
\[X={{A}^{-1}}B\]
Complete step by step solution:
The two equation given are \[2x-3y+6=0\] and \[6x+y+8=0\], and to form the matrix A we will form the matrix A as \[\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|\] which is equal to \[\left| \begin{matrix}
2 & -3 \\
6 & 1 \\
\end{matrix} \right|\] and to form the matrix B we will make a \[2\times 1\] matrix of constant value of
\[\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\] as \[\left| \begin{matrix}
-6 \\
-8 \\
\end{matrix} \right|\].
With the matrix of X as \[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|\] we will form a matrix equation of:
\[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|={{A}^{-1}}\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\]
Now forming the inverse of the matrix A, we will get the inverse of matrix A as:
\[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|\]
The value of \[\left| A \right|\] is the determinant which is given as:
\[\Rightarrow \left| A \right|=\left( 2\times 1-\left( -3\times 6 \right) \right)\]
\[\Rightarrow \left| A \right|=20\]
Now with the determinant value found we will find the value of inverse matrix of A as:
\[{{A}^{-1}}=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\] (The inverse of \[\left| \begin{matrix}
2 & -3 \\
6 & 1 \\
\end{matrix} \right|\] is \[\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\] by interchanging the original matrix as \[\left| \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right|\])
\[\Rightarrow {{A}^{-1}}=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\]
Placing the inverse value in \[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|={{A}^{-1}}\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\] , we get:
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\left| \begin{matrix}
-6 \\
-8 \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\dfrac{1}{20}\left| \begin{matrix}
1\times -6+3\times -8 \\
-6\times -6+2\times 8 \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\left| \begin{matrix}
\dfrac{1\times -6+3\times -8}{20} \\
\dfrac{-6\times -6+2\times 8}{20} \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\left| \begin{matrix}
\dfrac{-30}{20} \\
\dfrac{52}{20} \\
\end{matrix} \right|\]
Therefore, the value of \[x=\dfrac{-3}{2}\]and \[y=\dfrac{13}{5}\]
Note: The matrix inversion method can only work on a square matrix. We will also solve these equations by elimination method and substitution method.
\[X={{A}^{-1}}B\]
Complete step by step solution:
The two equation given are \[2x-3y+6=0\] and \[6x+y+8=0\], and to form the matrix A we will form the matrix A as \[\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|\] which is equal to \[\left| \begin{matrix}
2 & -3 \\
6 & 1 \\
\end{matrix} \right|\] and to form the matrix B we will make a \[2\times 1\] matrix of constant value of
\[\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\] as \[\left| \begin{matrix}
-6 \\
-8 \\
\end{matrix} \right|\].
With the matrix of X as \[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|\] we will form a matrix equation of:
\[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|={{A}^{-1}}\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\]
Now forming the inverse of the matrix A, we will get the inverse of matrix A as:
\[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|\]
The value of \[\left| A \right|\] is the determinant which is given as:
\[\Rightarrow \left| A \right|=\left( 2\times 1-\left( -3\times 6 \right) \right)\]
\[\Rightarrow \left| A \right|=20\]
Now with the determinant value found we will find the value of inverse matrix of A as:
\[{{A}^{-1}}=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\] (The inverse of \[\left| \begin{matrix}
2 & -3 \\
6 & 1 \\
\end{matrix} \right|\] is \[\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\] by interchanging the original matrix as \[\left| \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right|\])
\[\Rightarrow {{A}^{-1}}=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\]
Placing the inverse value in \[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|={{A}^{-1}}\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\] , we get:
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\left| \begin{matrix}
-6 \\
-8 \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\dfrac{1}{20}\left| \begin{matrix}
1\times -6+3\times -8 \\
-6\times -6+2\times 8 \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\left| \begin{matrix}
\dfrac{1\times -6+3\times -8}{20} \\
\dfrac{-6\times -6+2\times 8}{20} \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\left| \begin{matrix}
\dfrac{-30}{20} \\
\dfrac{52}{20} \\
\end{matrix} \right|\]
Therefore, the value of \[x=\dfrac{-3}{2}\]and \[y=\dfrac{13}{5}\]
Note: The matrix inversion method can only work on a square matrix. We will also solve these equations by elimination method and substitution method.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE