Answer
Verified
397.2k+ views
Hint: Revise all the formulas of trigonometry and all the properties of inverse trigonometric functions. The inverse trigonometric functions are the inverse functions of the trigonometric functions for example inverse of sine, cosine, tangent etc.
Complete step by step solution:
We have to solve $\tan (1/2{{\sin }^{-1}}3/4)$ for that let us assume that
$1/2{{\sin }^{-1}}3/4=\theta $
Now by cross multiplication
$1/2{{\sin }^{-1}}3/4=\theta $ becomes
${{\sin }^{-1}}3/4=2\theta $ ---- (1)
Now by multiplying sin on both sides of the equation(1)
$\sin ({{\sin }^{-1}}3/4)=\sin 2\theta $
$\sin 2\theta =3/4$ ---- (2)
Now by using the formula $\sin 2\theta =2\tan \theta /(1+{{\tan }^{2}}\theta )$ on equation (2)
$2\tan \theta /(1+{{\tan }^{2}}\theta )=3/4$
Now by cross multiplication
$2\tan \theta /(1+{{\tan }^{2}}\theta )=3/4$ becomes
$4(2\tan \theta )=3(1+{{\tan }^{2}}\theta )$ ----- (3)
By solving the brackets of equation (3)
$8\tan \theta =3+3{{\tan }^{2}}\theta $
$3{{\tan }^{2}}\theta -8\tan \theta +3=0$ ------- (4)
To find the roots of a quadratic equation we use the formula
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
So by using the above formula on equation (4)
$\tan \theta =-(-8)\pm \sqrt{64-(4 \times 3 \times 3}/2 \times 3$
So, $\tan \theta =4\pm \sqrt{7}/3$ ----- (5)
Now by taking tan inverse on both sides of equation (5)
$\theta ={{\tan }^{-1}}\left[ 4\pm \sqrt{7}/3 \right]$
$\tan \theta =4\pm \sqrt{7}/3$
As $\theta =1/2{{\sin }^{-1}}3/4$
So, $\tan \theta =4\pm \sqrt{7}/3$
Since ,
$\begin{align}
& -\pi /2\le {{\sin }^{-1}}3/4\le \pi /2 \\
& -\pi /4\le 1/2{{\sin }^{-1}}3/4\le \pi /4 \\
\end{align}$
Therefore, $\tan (-\pi /4)\le \tan 1/2({{\sin }^{-1}}3/4)\le \tan \pi /4$
$-1\le \tan (1/2{{\sin }^{-1}}3/4)\le 1$
Since, $4+\sqrt{7}/3>1$ so it is ignored
Therefore, $\tan (1/2{{\sin }^{-1}}3/4)=4-\sqrt{7}/3$.
Note:
There is a restriction on $\sin \theta $ i.e. $-\pi /2\le {{\sin }^{-1}}\theta \le \pi /2$. So all the values which are greater than one should be ignored. Always use the correct trigonometric formula to solve a particular equation as using the wrong formula leads towards the wrong answer.
Complete step by step solution:
We have to solve $\tan (1/2{{\sin }^{-1}}3/4)$ for that let us assume that
$1/2{{\sin }^{-1}}3/4=\theta $
Now by cross multiplication
$1/2{{\sin }^{-1}}3/4=\theta $ becomes
${{\sin }^{-1}}3/4=2\theta $ ---- (1)
Now by multiplying sin on both sides of the equation(1)
$\sin ({{\sin }^{-1}}3/4)=\sin 2\theta $
$\sin 2\theta =3/4$ ---- (2)
Now by using the formula $\sin 2\theta =2\tan \theta /(1+{{\tan }^{2}}\theta )$ on equation (2)
$2\tan \theta /(1+{{\tan }^{2}}\theta )=3/4$
Now by cross multiplication
$2\tan \theta /(1+{{\tan }^{2}}\theta )=3/4$ becomes
$4(2\tan \theta )=3(1+{{\tan }^{2}}\theta )$ ----- (3)
By solving the brackets of equation (3)
$8\tan \theta =3+3{{\tan }^{2}}\theta $
$3{{\tan }^{2}}\theta -8\tan \theta +3=0$ ------- (4)
To find the roots of a quadratic equation we use the formula
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
So by using the above formula on equation (4)
$\tan \theta =-(-8)\pm \sqrt{64-(4 \times 3 \times 3}/2 \times 3$
So, $\tan \theta =4\pm \sqrt{7}/3$ ----- (5)
Now by taking tan inverse on both sides of equation (5)
$\theta ={{\tan }^{-1}}\left[ 4\pm \sqrt{7}/3 \right]$
$\tan \theta =4\pm \sqrt{7}/3$
As $\theta =1/2{{\sin }^{-1}}3/4$
So, $\tan \theta =4\pm \sqrt{7}/3$
Since ,
$\begin{align}
& -\pi /2\le {{\sin }^{-1}}3/4\le \pi /2 \\
& -\pi /4\le 1/2{{\sin }^{-1}}3/4\le \pi /4 \\
\end{align}$
Therefore, $\tan (-\pi /4)\le \tan 1/2({{\sin }^{-1}}3/4)\le \tan \pi /4$
$-1\le \tan (1/2{{\sin }^{-1}}3/4)\le 1$
Since, $4+\sqrt{7}/3>1$ so it is ignored
Therefore, $\tan (1/2{{\sin }^{-1}}3/4)=4-\sqrt{7}/3$.
Note:
There is a restriction on $\sin \theta $ i.e. $-\pi /2\le {{\sin }^{-1}}\theta \le \pi /2$. So all the values which are greater than one should be ignored. Always use the correct trigonometric formula to solve a particular equation as using the wrong formula leads towards the wrong answer.
Recently Updated Pages
Calculate the equivalent resistance between A and class 12 physics JEE_Main
The potential difference between points A and B in class 12 physics JEE_Main
A wire is bent in the form of a triangle now the equivalent class 12 physics NEET_UG
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Let overrightarrow a hat i hat joverrightarrow b hat class 12 maths JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE