How do you solve the inequality \[4x - 2 < 6\] or \[3x + 1 > 22\]?
Answer
Verified
441.9k+ views
Hint: An inequality compares two values, showing if one is less than, greater than, or simply not equal to another value. Here we need to solve for ‘x’ which is a variable. Solving the given inequality is very like solving equations and we do most of the same thing but we must pay attention to the direction of inequality\[( \leqslant , > )\]. We have two linear inequalities. We can solve this.
Complete step-by-step solution:
Given, \[4x - 2 < 6\]
We add 2 on both sides and we know that the inequality direction doesn’t change,
\[
4x - 2 + 2 < 6 + 2 \\
4x < 8 \\
\]
We divide 4 on both sides we have,
\[
x < \dfrac{8}{4} \\
x < 2 \\
\]
Thus the solution of \[4x - 2 < 6\] is \[x < 2\]. The interval form is \[( - \infty ,2)\].
Now take \[3x + 1 > 22\]
Subtract 1 on both sides we have,
\[
3x + 1 - 1 > 22 - 1 \\
3x > 21 \\
\]
Divide by 3 on both sides we have,
\[
x > \dfrac{{21}}{3} \\
x > 7 \\
\]
Thus the solution of \[3x + 1 > 22\] is \[x > 7\]. The interval form is \[(7,\infty )\].
Note: We take value of ‘x’ in \[( - \infty ,2)\] and put it in \[4x - 2 < 6\]
Let’s put \[x = 0\] in \[4x - 2 < 6\]
\[ 4(0) - 2 < 6 \\
- 2 < 6 \\
\]
Which is correct. We check for the second inequality in the same way.
We know that \[a \ne b\] says that ‘a’ is not equal to ‘b’. \[a > b\] means that ‘a’ is less than ‘b’. \[a < b\] means that ‘a’ is greater than ‘b’. These two are known as strict inequality. \[a \geqslant b\] means that ‘a’ is less than or equal to ‘b’. \[a \leqslant b\] means that ‘a’ is greater than or equal to ‘b’.
The direction of inequality do not change in these cases:
-Add or subtract a number from both sides.
-Multiply or divide both sides by a positive number.
-Simplify a side.
The direction of the inequality change in these cases:
-Multiply or divide both sides by a negative number.
-Swapping left and right hand sides.
Complete step-by-step solution:
Given, \[4x - 2 < 6\]
We add 2 on both sides and we know that the inequality direction doesn’t change,
\[
4x - 2 + 2 < 6 + 2 \\
4x < 8 \\
\]
We divide 4 on both sides we have,
\[
x < \dfrac{8}{4} \\
x < 2 \\
\]
Thus the solution of \[4x - 2 < 6\] is \[x < 2\]. The interval form is \[( - \infty ,2)\].
Now take \[3x + 1 > 22\]
Subtract 1 on both sides we have,
\[
3x + 1 - 1 > 22 - 1 \\
3x > 21 \\
\]
Divide by 3 on both sides we have,
\[
x > \dfrac{{21}}{3} \\
x > 7 \\
\]
Thus the solution of \[3x + 1 > 22\] is \[x > 7\]. The interval form is \[(7,\infty )\].
Note: We take value of ‘x’ in \[( - \infty ,2)\] and put it in \[4x - 2 < 6\]
Let’s put \[x = 0\] in \[4x - 2 < 6\]
\[ 4(0) - 2 < 6 \\
- 2 < 6 \\
\]
Which is correct. We check for the second inequality in the same way.
We know that \[a \ne b\] says that ‘a’ is not equal to ‘b’. \[a > b\] means that ‘a’ is less than ‘b’. \[a < b\] means that ‘a’ is greater than ‘b’. These two are known as strict inequality. \[a \geqslant b\] means that ‘a’ is less than or equal to ‘b’. \[a \leqslant b\] means that ‘a’ is greater than or equal to ‘b’.
The direction of inequality do not change in these cases:
-Add or subtract a number from both sides.
-Multiply or divide both sides by a positive number.
-Simplify a side.
The direction of the inequality change in these cases:
-Multiply or divide both sides by a negative number.
-Swapping left and right hand sides.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE
Write an application to the principal requesting five class 10 english CBSE
What are the public facilities provided by the government? Also explain each facility
What is Commercial Farming ? What are its types ? Explain them with Examples
Complete the sentence with the most appropriate word class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE