Answer
Verified
432k+ views
Hint: An inequality compares two values, showing if one is less than, greater than, or simply not equal to another value. Here we need to solve for ‘x’ which is a variable. Solving the given inequality is very like solving equations and we do most of the same thing but we must pay attention to the direction of inequality\[( \leqslant , > )\].
Complete step-by-step solution:
Given, \[ - 5x \geqslant 25\].
Now we need to solve for ‘x’.
Since we have negative 5 on the left hand side. If we divide a negative number on both side the inequality the sign changes.
Now divide -5 on both side of the inequality we have,
\[
x \leqslant \dfrac{{25}}{{ - 5}} \\
x \leqslant - 5 \\
\]
Thus the solution of \[ - 5x \geqslant 25\] is \[x \leqslant - 5\].
In interval form we have \[( - \infty ,5]\].
(If we have \[ \leqslant or \geqslant \] we use closed intervals. If we have \[ > or < \] we use open interval)
Note: We know that \[a \ne b\]is says that ‘a’ is not equal to ‘b’. \[a > b\] means that ‘a’ is less than ‘b’. \[a < b\] means that ‘a’ is greater than ‘b’. These two are known as strict inequality. \[a \geqslant b\] means that ‘a’ is less than or equal to ‘b’. \[a \leqslant b\] means that ‘a’ is greater than or equal to ‘b’.
The direction of inequality do not change in these cases:
-Add or subtract a number from both sides.
-Multiply or divide both sides by a positive number.
-Simplify a side.
The direction of the inequality change in these cases:
-Multiply or divide both sides by a negative number.
-Swapping left and right hand sides.
Complete step-by-step solution:
Given, \[ - 5x \geqslant 25\].
Now we need to solve for ‘x’.
Since we have negative 5 on the left hand side. If we divide a negative number on both side the inequality the sign changes.
Now divide -5 on both side of the inequality we have,
\[
x \leqslant \dfrac{{25}}{{ - 5}} \\
x \leqslant - 5 \\
\]
Thus the solution of \[ - 5x \geqslant 25\] is \[x \leqslant - 5\].
In interval form we have \[( - \infty ,5]\].
(If we have \[ \leqslant or \geqslant \] we use closed intervals. If we have \[ > or < \] we use open interval)
Note: We know that \[a \ne b\]is says that ‘a’ is not equal to ‘b’. \[a > b\] means that ‘a’ is less than ‘b’. \[a < b\] means that ‘a’ is greater than ‘b’. These two are known as strict inequality. \[a \geqslant b\] means that ‘a’ is less than or equal to ‘b’. \[a \leqslant b\] means that ‘a’ is greater than or equal to ‘b’.
The direction of inequality do not change in these cases:
-Add or subtract a number from both sides.
-Multiply or divide both sides by a positive number.
-Simplify a side.
The direction of the inequality change in these cases:
-Multiply or divide both sides by a negative number.
-Swapping left and right hand sides.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India