
Solve the integral $I = \int\limits_0^\pi {{{\sin }^2}x{\text{ }}dx} $.
Answer
519.3k+ views
Hint – In this question we have to evaluate the given integral so use the trigonometric half angle formula to simplify the trigonometric part inside the integral then use the integration of basic trigonometric terms to reach the answer.
“Complete step-by-step answer:”
Given integral
$I = \int\limits_0^\pi {{{\sin }^2}x{\text{ }}dx} $
As we know ${\sin ^2}x = \left( {\dfrac{{1 - \cos 2x}}{2}} \right)$ so, substitute this value in given integral we have,
$I = \int\limits_0^\pi {\left( {\dfrac{{1 - \cos 2x}}{2}} \right){\text{ }}dx} $
$I = \dfrac{1}{2}\int\limits_0^\pi {\left( {1 - \cos 2x} \right){\text{ }}dx} $
Now as we know integration of constant is x and $\int {\cos nx{\text{ }}dx} = \dfrac{{\sin nx}}{n} + c$ so, use this property in above integral we have,
$I = \dfrac{1}{2}\left[ {x - \dfrac{{\sin 2x}}{2}} \right]_0^\pi $
Now apply integral limit we have,
$I = \dfrac{1}{2}\left[ {\pi - \dfrac{{\sin 2\pi }}{2} - \left( {0 - \dfrac{{\sin 0}}{2}} \right)} \right]$
Now as we know the value of $\sin 2\pi $ and $\sin 0$ is zero so, substitute this value in given integral we have,
$I = \dfrac{1}{2}\left[ {\pi - 0 - 0} \right] = \dfrac{\pi }{2}$
So, this is the required value of the integral.
Thus, this is the required answer.
Note – Whenever we face such types of problems the key concept involved is to simplify the inside entity of the integration to the basic level so that the direct integration formula for trigonometric terms could be applied directly. This will help you to get on the right track to reach the answer.
“Complete step-by-step answer:”
Given integral
$I = \int\limits_0^\pi {{{\sin }^2}x{\text{ }}dx} $
As we know ${\sin ^2}x = \left( {\dfrac{{1 - \cos 2x}}{2}} \right)$ so, substitute this value in given integral we have,
$I = \int\limits_0^\pi {\left( {\dfrac{{1 - \cos 2x}}{2}} \right){\text{ }}dx} $
$I = \dfrac{1}{2}\int\limits_0^\pi {\left( {1 - \cos 2x} \right){\text{ }}dx} $
Now as we know integration of constant is x and $\int {\cos nx{\text{ }}dx} = \dfrac{{\sin nx}}{n} + c$ so, use this property in above integral we have,
$I = \dfrac{1}{2}\left[ {x - \dfrac{{\sin 2x}}{2}} \right]_0^\pi $
Now apply integral limit we have,
$I = \dfrac{1}{2}\left[ {\pi - \dfrac{{\sin 2\pi }}{2} - \left( {0 - \dfrac{{\sin 0}}{2}} \right)} \right]$
Now as we know the value of $\sin 2\pi $ and $\sin 0$ is zero so, substitute this value in given integral we have,
$I = \dfrac{1}{2}\left[ {\pi - 0 - 0} \right] = \dfrac{\pi }{2}$
So, this is the required value of the integral.
Thus, this is the required answer.
Note – Whenever we face such types of problems the key concept involved is to simplify the inside entity of the integration to the basic level so that the direct integration formula for trigonometric terms could be applied directly. This will help you to get on the right track to reach the answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Give simple chemical tests to distinguish between the class 12 chemistry CBSE

How was the Civil Disobedience Movement different from class 12 social science CBSE

India is the secondlargest producer of AJute Bcotton class 12 biology CBSE

Define peptide linkage class 12 chemistry CBSE

How is democracy better than other forms of government class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
