Answer
Verified
441k+ views
Hint: A linear equation is any equation that can be written in the form $ax + by + c = 0$ where a and b are real numbers and x and y are variables. This form is sometimes called the standard form of a linear equation with two variables. If the equation contains any fractions use the least common denominator to clear the fraction. We will do this by multiplying both sides of the equation by LCD.
Firstly we add the both equations then we get another linear equation in two variables. Secondly, we subtract the both given equations, we get another linear equation in two variables. Further both equations are solved by simple methods.
Complete step-by-step answer:
We have given two equation
\[ \Rightarrow \]\[152x - 378y{\text{ }} = {\text{ }} - 74\;.{\text{ }}.....{\text{ }}\left( 1 \right)\]
\[ \Rightarrow \]\[ - 378x + 152y{\text{ }} = {\text{ }} - 604\;......{\text{ }}\left( 2 \right)\]
In given equation, the coefficient of variable x and y in
Equation is the coefficient of y and x in 2 equations respectively.
Adding Equation 1 and 2, we get,
\[x = {\text{ }}2\]
\[\begin{array}{*{20}{l}}
{152x{\text{ }} - \;378y{\text{ }} = {\text{ }}-{\text{ }}74} \\
{ - 378x\; + 152y{\text{ }} = {\text{ }}-{\text{ }}604} \\
{ - - - - - - - - - - - - - - - - - - } \\
{ - 226x{\text{ }} - 226y{\text{ }} = {\text{ }} - {\text{ }}678}
\end{array}\]
\[ \Rightarrow \]\[ - 226\left( {x + y{\text{ }}} \right){\text{ }} = {\text{ }} - 678\]
\[ \Rightarrow \]\[x + y{\text{ }} = {\text{ }} - 678/ - 226 = {\text{ }}3\]
\[ \Rightarrow \] \[x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3 \ldots \ldots \ldots \ldots \ldots \ldots .\left( 3 \right)\]
After solving, we get the linear equation marked as 3 equation,
\[Subtracting{\text{ }}equation{\text{ }}1{\text{ }}and{\text{ }}2\]
\[\begin{array}{*{20}{l}}
{152x{\text{ }} - \;378y{\text{ }} = {\text{ }}-{\text{ }}74} \\
{ - 378x\; + 152y{\text{ }} = {\text{ }}-{\text{ }}604} \\
{\left( + \right)\;\;\;\;\;\left( - \right)\;\;\;\;\;\;\;\;\;\left( + \right)} \\
{ - - - - - - - - - - - - - - - } \\
{530x{\text{ }} - {\text{ }}530y{\text{ }} = {\text{ }}530}
\end{array}\]
\[ \Rightarrow \] \[530{\text{ }}\left( {x - {\text{ }}y{\text{ }}} \right){\text{ }} = {\text{ }}530\]
\[ \Rightarrow \] \[x - y{\text{ }} = {\text{ }}\dfrac{{530}}{{530}} = {\text{ }}1\]
\[ \Rightarrow \] \[x{\text{ }} - \;y{\text{ }} = {\text{ }}1 \ldots \ldots \ldots \ldots \ldots \ldots .\left( 4 \right)\]
Here, we use the elimination method.
On adding equation 3 and 4, we get,
\[\begin{array}{*{20}{l}}
{x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3} \\
{x{\text{ }} - \;y{\text{ }} = {\text{ }}1\;\;\;\;\;\;\;\;\;\;} \\
{ - - - - - - } \\
{2x{\text{ }} = {\text{ }}4}
\end{array}\]
\[ \Rightarrow \]\[x{\text{ }} = {\text{ }}\dfrac{4}{2}\]=\[x{\text{ }} = {\text{ }}2\]
On substituting \[x{\text{ }} = {\text{ }}2\] in equation 3
\[ \Rightarrow \]\[x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3\]
\[ \Rightarrow \]\[2{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3\]
\[ \Rightarrow \] ${y{\text{ }} = {\text{ }}3 - 2} $
\[ \Rightarrow \] ${y{\text{ }} = {\text{ }}1} $
Hence, \[x = {\text{ }}2\] and \[y = {\text{ }}1\] is the required solution.
Note: To remember the process of framing simultaneous linear equations from mathematical problems. To remember how to solve simultaneous equations by the method of comparison and method of cross multiplications. There is yet another visual way of representing quantitative data and its frequencies. This is a polygon.
Firstly we add the both equations then we get another linear equation in two variables. Secondly, we subtract the both given equations, we get another linear equation in two variables. Further both equations are solved by simple methods.
Complete step-by-step answer:
We have given two equation
\[ \Rightarrow \]\[152x - 378y{\text{ }} = {\text{ }} - 74\;.{\text{ }}.....{\text{ }}\left( 1 \right)\]
\[ \Rightarrow \]\[ - 378x + 152y{\text{ }} = {\text{ }} - 604\;......{\text{ }}\left( 2 \right)\]
In given equation, the coefficient of variable x and y in
Equation is the coefficient of y and x in 2 equations respectively.
Adding Equation 1 and 2, we get,
\[x = {\text{ }}2\]
\[\begin{array}{*{20}{l}}
{152x{\text{ }} - \;378y{\text{ }} = {\text{ }}-{\text{ }}74} \\
{ - 378x\; + 152y{\text{ }} = {\text{ }}-{\text{ }}604} \\
{ - - - - - - - - - - - - - - - - - - } \\
{ - 226x{\text{ }} - 226y{\text{ }} = {\text{ }} - {\text{ }}678}
\end{array}\]
\[ \Rightarrow \]\[ - 226\left( {x + y{\text{ }}} \right){\text{ }} = {\text{ }} - 678\]
\[ \Rightarrow \]\[x + y{\text{ }} = {\text{ }} - 678/ - 226 = {\text{ }}3\]
\[ \Rightarrow \] \[x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3 \ldots \ldots \ldots \ldots \ldots \ldots .\left( 3 \right)\]
After solving, we get the linear equation marked as 3 equation,
\[Subtracting{\text{ }}equation{\text{ }}1{\text{ }}and{\text{ }}2\]
\[\begin{array}{*{20}{l}}
{152x{\text{ }} - \;378y{\text{ }} = {\text{ }}-{\text{ }}74} \\
{ - 378x\; + 152y{\text{ }} = {\text{ }}-{\text{ }}604} \\
{\left( + \right)\;\;\;\;\;\left( - \right)\;\;\;\;\;\;\;\;\;\left( + \right)} \\
{ - - - - - - - - - - - - - - - } \\
{530x{\text{ }} - {\text{ }}530y{\text{ }} = {\text{ }}530}
\end{array}\]
\[ \Rightarrow \] \[530{\text{ }}\left( {x - {\text{ }}y{\text{ }}} \right){\text{ }} = {\text{ }}530\]
\[ \Rightarrow \] \[x - y{\text{ }} = {\text{ }}\dfrac{{530}}{{530}} = {\text{ }}1\]
\[ \Rightarrow \] \[x{\text{ }} - \;y{\text{ }} = {\text{ }}1 \ldots \ldots \ldots \ldots \ldots \ldots .\left( 4 \right)\]
Here, we use the elimination method.
On adding equation 3 and 4, we get,
\[\begin{array}{*{20}{l}}
{x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3} \\
{x{\text{ }} - \;y{\text{ }} = {\text{ }}1\;\;\;\;\;\;\;\;\;\;} \\
{ - - - - - - } \\
{2x{\text{ }} = {\text{ }}4}
\end{array}\]
\[ \Rightarrow \]\[x{\text{ }} = {\text{ }}\dfrac{4}{2}\]=\[x{\text{ }} = {\text{ }}2\]
On substituting \[x{\text{ }} = {\text{ }}2\] in equation 3
\[ \Rightarrow \]\[x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3\]
\[ \Rightarrow \]\[2{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3\]
\[ \Rightarrow \] ${y{\text{ }} = {\text{ }}3 - 2} $
\[ \Rightarrow \] ${y{\text{ }} = {\text{ }}1} $
Hence, \[x = {\text{ }}2\] and \[y = {\text{ }}1\] is the required solution.
Note: To remember the process of framing simultaneous linear equations from mathematical problems. To remember how to solve simultaneous equations by the method of comparison and method of cross multiplications. There is yet another visual way of representing quantitative data and its frequencies. This is a polygon.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE