: Solve the problem where \[\alpha \]is a constant
\[\int {\dfrac{{\cos \alpha }}{{\sin x\cos \left( {x - \alpha } \right)}}dx = } \]____________+c, where \[0 < x < \alpha < \dfrac{\pi }{2}\] .
A. \[ - \ln |\tan \,x\, + \,\cot \,\alpha |\]
B. \[\ln |\cot \,x\, + \,\tan \,\alpha |\]
C. \[\ln |\tan \,x\, + \,\cot \,\alpha |\]
D. \[ - \ln |\cot \,x\, + \,\tan \,\alpha |\]
Answer
Verified
505.2k+ views
Hint: Analyse the numerator and denominator, look for expansion of the numerator, such that it gets easier to solve the given equation and then integrate the simplified equation to get the answer.
.\[ \Rightarrow \int {\dfrac{{\cos \alpha }}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \].
We can express as (x-(x-$\alpha $),
\[ \Rightarrow \int {\dfrac{{\cos \left( {x - \left( {x - \alpha } \right)} \right)}}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \]
Expand the numerator using the formula of cos (A-B), taking A=x and B=(x-$\alpha $).
The formula of cos (A-B) is,
cos (A-B)=cosAcosB+sinAsinB,
Therefore, on applying the above formula, we get,
\[ \Rightarrow \int {\dfrac{{\cos x\cos \left( {x - \alpha } \right) + \sin x\sin \left( {x - \alpha } \right)}}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \]
Let us split the terms here such that, it becomes,
$ \Rightarrow \int {\left( {\cot x + \tan \left( {x - \alpha } \right)} \right)} dx$
Now, on integrating we get,
The integration of cot x = ln|sin x| + C and tan x = - ln|cos x| + C, therefore,
$ \Rightarrow \ln |\sin x| - \ln |\cos \left( {x - \alpha } \right)|$
Now, we know that,$\ln A - \ln B = \ln |\dfrac{A}{B}|$, therefore,
$ \Rightarrow \ln |\dfrac{{\sin x}}{{\cos \left( {x - \alpha } \right)}}|$
We can expand the denominator using the formula cos (A-B)= cosAcosB+sinAsinB,
Therefore the equation becomes,
$ \Rightarrow \ln |\dfrac{{\sin x}}{{\cos x\cos \alpha + \sin x\sin \alpha }}|$
Dividing the numerator and denominator with \[sinxcos\alpha ,\]we get,
\[ \Rightarrow \ln |\dfrac{{\sec \alpha }}{{\cot x + \tan \alpha }}|\]
We know that, $\ln A - \ln B = \ln |\dfrac{A}{B}|$
$ \Rightarrow \ln |\sec \alpha - \ln \left( {\cot x + \tan \alpha } \right)|$
Since, it is given that \[\alpha \]is constant, therefore,
$ \Rightarrow - \ln |\left( {\cot x + \tan \alpha } \right)| + C$
Hence, option D is correct.
Note: Make sure you take the correct value of A and B such that the solving part becomes easy in the further steps.and use appropriate formulas to expand the equation in numerator and denominator. Make sure you do not forget the signs while integrating.
.\[ \Rightarrow \int {\dfrac{{\cos \alpha }}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \].
We can express as (x-(x-$\alpha $),
\[ \Rightarrow \int {\dfrac{{\cos \left( {x - \left( {x - \alpha } \right)} \right)}}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \]
Expand the numerator using the formula of cos (A-B), taking A=x and B=(x-$\alpha $).
The formula of cos (A-B) is,
cos (A-B)=cosAcosB+sinAsinB,
Therefore, on applying the above formula, we get,
\[ \Rightarrow \int {\dfrac{{\cos x\cos \left( {x - \alpha } \right) + \sin x\sin \left( {x - \alpha } \right)}}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \]
Let us split the terms here such that, it becomes,
$ \Rightarrow \int {\left( {\cot x + \tan \left( {x - \alpha } \right)} \right)} dx$
Now, on integrating we get,
The integration of cot x = ln|sin x| + C and tan x = - ln|cos x| + C, therefore,
$ \Rightarrow \ln |\sin x| - \ln |\cos \left( {x - \alpha } \right)|$
Now, we know that,$\ln A - \ln B = \ln |\dfrac{A}{B}|$, therefore,
$ \Rightarrow \ln |\dfrac{{\sin x}}{{\cos \left( {x - \alpha } \right)}}|$
We can expand the denominator using the formula cos (A-B)= cosAcosB+sinAsinB,
Therefore the equation becomes,
$ \Rightarrow \ln |\dfrac{{\sin x}}{{\cos x\cos \alpha + \sin x\sin \alpha }}|$
Dividing the numerator and denominator with \[sinxcos\alpha ,\]we get,
\[ \Rightarrow \ln |\dfrac{{\sec \alpha }}{{\cot x + \tan \alpha }}|\]
We know that, $\ln A - \ln B = \ln |\dfrac{A}{B}|$
$ \Rightarrow \ln |\sec \alpha - \ln \left( {\cot x + \tan \alpha } \right)|$
Since, it is given that \[\alpha \]is constant, therefore,
$ \Rightarrow - \ln |\left( {\cot x + \tan \alpha } \right)| + C$
Hence, option D is correct.
Note: Make sure you take the correct value of A and B such that the solving part becomes easy in the further steps.and use appropriate formulas to expand the equation in numerator and denominator. Make sure you do not forget the signs while integrating.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
The type of inflorescence in Tulsi a Cyanthium b Hypanthodium class 11 biology CBSE