Answer
Verified
444.9k+ views
Hint: We will see the standard quadratic equation. Then we will compare the given quadratic equation with the standard quadratic equation and obtain the corresponding coefficients. Then we will look at the quadratic formula to solve the quadratic equation. We will substitute the coefficients of the given quadratic equation in the quadratic formula and simplify it to obtain the solution of the given quadratic equation.
Complete step-by-step solution:
We know that the standard quadratic equation is $a{{x}^{2}}+bx+c=0$. The given quadratic equation is ${{x}^{2}}+2x+10=0$. Now, we will compare the standard quadratic equation with the given quadratic equation. Comparing the two quadratic equations, we obtain the corresponding coefficients as $a=1$, $b=2$ and $c=10$.
The quadratic formula to obtain the solution of a standard quadratic equation is given as
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Now, we will substitute the values $a=1$, $b=2$ and $c=10$ in the quadratic formula to obtain the solution of the given quadratic equation, in the following manner,
$x=\dfrac{-2\pm \sqrt{{{2}^{2}}-4\times 1\times 10}}{2\times 1}$
Simplifying the above equation, we get
$\begin{align}
& x=\dfrac{-2\pm \sqrt{4-40}}{2} \\
& \Rightarrow x=\dfrac{-2\pm \sqrt{-36}}{2} \\
& \Rightarrow x=\dfrac{-2\pm 6i}{2} \\
& \therefore x=-1\pm 3i \\
\end{align}$
Therefore, the solution of the given quadratic equation is $x=-1\pm 3i$.
Note: It is important that we know the quadratic formula to solve this type of question. Since the method of solving the quadratic equation is mentioned in the question, we have to use it. But there are other ways to solve the given quadratic equation. The other methods are factorization method and completing the square method. We can use these methods to verify the answer obtained by the quadratic formula. It is better to do the calculations explicitly so that we can avoid making any minor mistakes.
Complete step-by-step solution:
We know that the standard quadratic equation is $a{{x}^{2}}+bx+c=0$. The given quadratic equation is ${{x}^{2}}+2x+10=0$. Now, we will compare the standard quadratic equation with the given quadratic equation. Comparing the two quadratic equations, we obtain the corresponding coefficients as $a=1$, $b=2$ and $c=10$.
The quadratic formula to obtain the solution of a standard quadratic equation is given as
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Now, we will substitute the values $a=1$, $b=2$ and $c=10$ in the quadratic formula to obtain the solution of the given quadratic equation, in the following manner,
$x=\dfrac{-2\pm \sqrt{{{2}^{2}}-4\times 1\times 10}}{2\times 1}$
Simplifying the above equation, we get
$\begin{align}
& x=\dfrac{-2\pm \sqrt{4-40}}{2} \\
& \Rightarrow x=\dfrac{-2\pm \sqrt{-36}}{2} \\
& \Rightarrow x=\dfrac{-2\pm 6i}{2} \\
& \therefore x=-1\pm 3i \\
\end{align}$
Therefore, the solution of the given quadratic equation is $x=-1\pm 3i$.
Note: It is important that we know the quadratic formula to solve this type of question. Since the method of solving the quadratic equation is mentioned in the question, we have to use it. But there are other ways to solve the given quadratic equation. The other methods are factorization method and completing the square method. We can use these methods to verify the answer obtained by the quadratic formula. It is better to do the calculations explicitly so that we can avoid making any minor mistakes.
Recently Updated Pages
On the portion of the straight line x + 2y 4 intercepted class 11 maths JEE_Main
The equations of two equal sides AB AC of an isosceles class 11 maths JEE_Main
If two curves whose equations are ax2 + 2hxy + by2 class 11 maths JEE_Main
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE