Answer
Verified
429k+ views
Hint:To solve the equation we use the complex number formula where we take the value of \[x\] as \[\left( a+bi \right)\] and then form the equation by separating the values and complex number values by solving the two equations up and down and finding the value of \[a\] and \[b\] and then placing the values in terms of \[x\].
Complete step by step solution:
According to the question given, the equation is \[{{x}^{2}}-\left( 3\sqrt{2}-2i \right)x-\sqrt{2}i=0\].
After writing the equation, we place the value of \[x\] in terms of \[\left( a+bi \right)\] and then we form the equation as:
\[\Rightarrow {{\left( a+bi \right)}^{2}}-\left( 3\sqrt{2}-2i \right)\left( a+bi \right)-\sqrt{2}i=0\]
Now we expand the equation and separate the values in terms of normal and complex number where we get the value of the equation as:
\[\Rightarrow \left( {{a}^{2}}-{{b}^{2}}-3\sqrt{2}a-2b \right)+i\left( -\sqrt{2}+2a+2ab-3\sqrt{2}b \right)\]
\[\Rightarrow 0+0i\]
Now writing the equation up and down so as to eliminate the values and then find the values in term of
\[a\] and \[b\].
\[\Rightarrow \begin{matrix}
\left( {{a}^{2}}-{{b}^{2}}-3\sqrt{2}a-2b \right)=0\text{ } \\
\left( -\sqrt{2}+2a+2ab-3\sqrt{2}b \right)=0 \\
\end{matrix}\]
Solving the two equations we find the value of \[a\] and \[b\] both positive and negative and then we find two equations of \[x\] with both being \[x=a\pm ib\]. Hence, after solving the equation we get the value of \[a=\pm \dfrac{3\sqrt{2}-4}{2}\] and \[b=\pm \dfrac{2+\sqrt{2}}{2}\].
Therefore, the two values of \[x\] is equal to \[\pm \dfrac{3\sqrt{2}-4}{2}\pm \dfrac{2+\sqrt{2}}{2}i\]
Note:
Complex number are number composed of real and imaginary number written in form of \[\left( a+bi
\right)\], students may go wrong if they try to solve it like a quadratic equation as the question will only get difficult to solve and get lengthy therefore, we first separate the equation in terms \[\left( a+bi \right)\].
Complete step by step solution:
According to the question given, the equation is \[{{x}^{2}}-\left( 3\sqrt{2}-2i \right)x-\sqrt{2}i=0\].
After writing the equation, we place the value of \[x\] in terms of \[\left( a+bi \right)\] and then we form the equation as:
\[\Rightarrow {{\left( a+bi \right)}^{2}}-\left( 3\sqrt{2}-2i \right)\left( a+bi \right)-\sqrt{2}i=0\]
Now we expand the equation and separate the values in terms of normal and complex number where we get the value of the equation as:
\[\Rightarrow \left( {{a}^{2}}-{{b}^{2}}-3\sqrt{2}a-2b \right)+i\left( -\sqrt{2}+2a+2ab-3\sqrt{2}b \right)\]
\[\Rightarrow 0+0i\]
Now writing the equation up and down so as to eliminate the values and then find the values in term of
\[a\] and \[b\].
\[\Rightarrow \begin{matrix}
\left( {{a}^{2}}-{{b}^{2}}-3\sqrt{2}a-2b \right)=0\text{ } \\
\left( -\sqrt{2}+2a+2ab-3\sqrt{2}b \right)=0 \\
\end{matrix}\]
Solving the two equations we find the value of \[a\] and \[b\] both positive and negative and then we find two equations of \[x\] with both being \[x=a\pm ib\]. Hence, after solving the equation we get the value of \[a=\pm \dfrac{3\sqrt{2}-4}{2}\] and \[b=\pm \dfrac{2+\sqrt{2}}{2}\].
Therefore, the two values of \[x\] is equal to \[\pm \dfrac{3\sqrt{2}-4}{2}\pm \dfrac{2+\sqrt{2}}{2}i\]
Note:
Complex number are number composed of real and imaginary number written in form of \[\left( a+bi
\right)\], students may go wrong if they try to solve it like a quadratic equation as the question will only get difficult to solve and get lengthy therefore, we first separate the equation in terms \[\left( a+bi \right)\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE